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S.1 Preliminary Lemma

The following lemma will be used several times in what follows.

Lemma S1. Fix any ε > 0 and any k = 1, ..., K. There exists δ > 0 small enough such

that, with probability going to 1 as n → ∞, for each agent in I, (i) each of his top δ|Ok|
favorite objects in O≥k := ∪`≥kO` yields a payoff greater than U(uk, 1) − ε and (ii) every

such object belongs to Ok; moreover, for each object in O, (iii) each of its top δ|I| individuals

in I have priority scores of at least V (1)− ε.

For the proof, we first prove the following claim:

Claim: Fix any ε̃ > 0. Let Î and Ô be two sets such that both |Î| and |Ô| are in between

αn and n for some α > 0. For each i ∈ Î, let Xi be the number of objects in Ô for which

ξio ≥ 1− ε̃. Then, for any δ < ε̃, Pr{∃i with Xi ≤ δ |Ô|} → 0 as n→∞.

Proof. Xi follows a binomial distribution B(|Ô|, ε̃) (recall that ξio follows a uniform
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distribution with support [0, 1]). Hence:

Pr{∃i with Xi ≤ δ|Ô|} ≤
∑

i∈Î Pr{Xi ≤ δ|Ô|}
= |Î|Pr{Xi ≤ δ|Ô|}

≤ |Î|1
2

exp
(
−2 (|Ô|̃ε−δ|Ô|)2

|Ô|

)
= |Î|

2 exp(2(ε̃−δ)2|Ô|)
→ 0,

where the first inequality is by the union bound while the second inequality is by Hoeffding’s

inequality.

Proof of Lemma S1. It should be clear that the third part of the statement can

be proven using the same argument used for the second part. In addition, for a ε > 0

sufficiently small that for each k = 1, . . . , K − 1, U(uk, 1)− ε > U(uk+1, 1), objects in O≥k
that yield a payoff greater than U(uk, 1)− ε can only be in Ok. Hence, the first part of the

Lemma implies the second part. Thus, in the sequel, we only prove the first part of the

statement.

Let us fix ε > 0. By the continuity of U(uk, ·), there exists ε̃ > 0 such that U(uk, 1− ε̃) >
U(uk, 1) − ε. By the above claim, with Î := I and Ô := Ok, there exists δ < ε̃ such that,

with high probability, all individuals in I have at least δ|Ok| objects os in Ok for which

ξio > 1− ε̃. By our choice of ε̃, the payoffs that individuals enjoy for these objects must be

higher than U(uk, 1)− ε. This implies that with probability going to 1, for every individual

in I, his δ|Ok| most favorite objects in O≥k yield a payoff greater than U(uk, 1) − ε, as

claimed.

S.2 Proof of Theorem 2

To begin, define a random set:

Ô := {o ∈ O1|o is assigned in TTC via long cycles}.

Lemma S2. There exist γ > 0, δ > 0, N > 0 such that

Pr

{
|Ô|
n

> δ

}
> γ,

for all n > N .

Proof. Since the proof is rather long and requires several preliminary results, we

organize the proof in Section S.3.
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For the next result, define

I2 := {i ∈ I|TTC(i) ∈ O2}

to be the (random) set of agents who are assigned objects in O2 under TTC. We next

establish that any randomly selected (unmatched) pair from Ô and I2 forms an ε-block

with positive probability for sufficiently small ε > 0.

Lemma S3. There exist ε > 0, ζ > 0 such that, for any ε ∈ [0, ε):

Pr
[
ηjo ≥ ηTTC(o)o + ε

∣∣∣o ∈ Ô, j ∈ I2] > ζ.

Proof. Note first that because the common value difference between O1 and O2 objects

is large, if o ∈ Ô ⊂ O1 and j ∈ I2, it must be the case that o does not point to j in the cycle

to which o belongs under TTC (otherwise, if j is part of the cycle in which o is cleared, as

o ∈ O1, this means that j must be pointing to an object in O1 when she is cleared, which

contradicts j ∈ I2). Note also that j is still in the market when o is cleared.

Define E1 := {ηjo ≥ ηTTC(o)o} ∧ {o ∈ Ô} ∧ {j ∈ I2} and E2 := {ηjo ≤ ηTTC(o)o} ∧ {o ∈
Ô} ∧ {j ∈ I2}. We first show that PrE1 = PrE2.

Assume that given realizations ξ := (ξio)io and η := (ηio)io, event E1 occurs. Define

η̂ := (η̂io)io, where η̂jo := ηTTC(o)o and η̂TTC(o)o := ηjo. η̂ and η coincide otherwise.

It is easily verified that under the realizations ξ and η̂, event E2 occurs. Indeed, that

{η̂jo ≤ η̂TTC(o)o} holds true is trivial. Now, because, as we already claimed, under the

realizations ξ and η, j and TTC(o) are never pointed to by o, when j and TTC(o) are

switched in o’s priorities, by definition of TTC, o still belongs to the same cycle, and hence,

TTC runs exactly in the same way. This shows that {o ∈ Ô} ∧ {j ∈ I2} also holds true

under the realizations ξ and η̂,

Since Pr(ξ,η) = Pr(ξ, η̂), we can easily conclude that PrE1 = PrE2.

Next, let Eε := {ηjo ≥ ηTTC(o)o + ε}. Note:

∪ε>0Eε = {ηjo > ηTTC(o)o} =: E.

Because the distribution of ηjo has no atom, Pr
[
·
∣∣∣o ∈ Ô, j ∈ I2], the distribution of ηjo

conditional on o ∈ Ô and j ∈ I2 also has no atom (Pr(ηjo = η) = 0 ⇒ Pr(ηjo =

η
∣∣∣o ∈ Ô, j ∈ I2 ) = 0). Thus, we must have:

Pr
[
E
∣∣∣o ∈ Ô, j ∈ I2] = Pr

[
{ηjo ≥ ηTTC(o)o}

∣∣∣o ∈ Ô, j ∈ I2] =
1

2

where the last equality holds because PrE1 = PrE2.
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As Eε increases when ε decreases, combining the above, we obtain:1

lim
ε→0

Pr
[
Eε

∣∣∣o ∈ Ô, j ∈ I2] = Pr
[
∪ε>0Eε

∣∣∣o ∈ Ô, j ∈ I2] = Pr
[
E
∣∣∣o ∈ Ô, j ∈ I2] =

1

2
.

Thus, one can fix ζ ∈ (0, 1/2) (which can be set arbitrarily close to 1/2) and find ε > 0

such that for any ε ∈ (0, ε), Pr
[
Eε

∣∣∣o ∈ Ô, j ∈ I2] > ζ.

Corollary S1. For any ε > 0 sufficiently small, there exist ζ > 0, N > 0 such that, for all

n > N :

E

[
|Îε2(o)|
n

∣∣∣o ∈ Ô] ≥ x2ζ

where Îε2(o) := {i ∈ I2|ηio > ηTTC(o)o + ε}.

Proof. For any ε sufficiently small, we have ζ > 0 and N > 0 such that for all n > N :

E
[
|Îε2(o)|

∣∣∣o ∈ Ô] = E

[∑
i∈I2

1{ηio>ηTTC(o)o+ε}

∣∣∣o ∈ Ô]

= EI2

(
E

[∑
i∈I2

1{ηio>ηTTC(o)o+ε}

∣∣∣o ∈ Ô, I2])

= EI2

(∑
i∈I2

E
[
1{ηio>ηTTC(o)o+ε}

∣∣∣o ∈ Ô, I2, i ∈ I2])
= x2nEI2

(
E
[
1{ηio>ηTTC(o)o+ε}

∣∣∣o ∈ Ô, I2, i ∈ I2])
= x2nPr(ηio > ηTTC(o)o + ε

∣∣∣o ∈ Ô, i ∈ I2 )

= x2nPr(ηio ≥ ηTTC(o)o + ε
∣∣∣o ∈ Ô, i ∈ I2 )

≥ x2ζn,

where the inequality follows from Lemma S3 .

We are now ready to prove Theorem 2. The proof follows from Lemma S2 and Corollary

S1. The former implies that as the economy grows, the expected number of objects in tier

1 assigned via long cycles remains significant. The latter implies that each of such objects

finds many agents assigned by TTC to O2 desirable for forming ε-blocks with. Specifically,

1Recall the following property. Let {En}n be an increasing sequence of events. Let E := ∪nEn be the

limit of {En}n. Then Pr(E) = limn→∞ Pr(En).
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for any sufficiently small ε ∈ (0, U(u1, 0)− U(u2, 1)), we obtain that, for any n > N :

E
[
|Jε(TTC)|
n(n− 1)

]
≥ E

∑
o∈Ô

|Îε2(o)|
n(n− 1)


≥ Pr{|Ô| ≥ δn}E

∑
o∈Ô

|Îε2(o)|
n(n− 1)

∣∣∣|Ô| ≥ δn

 ≥ γEÔ

E

∑
o∈Ô

|Îε2(o)|
n(n− 1)

∣∣∣|Ô| ≥ δn, Ô


= γEÔ

∑
o∈Ô

E

[
|Îε2(o)|
n(n− 1)

∣∣∣|Ô| ≥ δn, Ô, o ∈ Ô

] ≥ γδnE

[
|Îε2(o)|
n(n− 1)

∣∣∣o ∈ Ô]

≥ γδE

[
|Îε2(o)|
n

∣∣∣o ∈ Ô] ≥ γδζx2 > 0

where the first inequality follows from the observation that if i ∈ Îε2(o) and o ∈ Ô, then

(i, o) ε-blocks TTC, while the penultimate inequality follows from Corollary S1.

S.3 Proof of Lemma S2

The proof of Lemma S2 requires a deeper understanding of the random structure of TTC.

In the next section, we simply present the part of the results that are of direct use for the

proof of Lemma S2. The result on the random structure of TTC is stated without proof,

its proof can be found in Che and Tercieux (2017).

We need to begin with some preliminary definitions and results from random graph/mapping

theory.

S.3.1 Preliminaries

To begin, recall that it is sufficient to consider the TTC assignment arising from the market

consisting of the agents I and the objects O1 in the top tier (recall that, irrespective of the

realizations of the idiosyncratic values, all agents prefer every object in O1 to any object

in O2). Hence, we shall simply consider an unbalanced market consisting of a set I of

agents and a set O of objects such that (1) the preferences of each side with respect to the

other side are drawn iid uniformly, and (2) n = |I| ≥ |O|.
Consider any two finite sets I and O, with cardinalities |I| = n, |O| = o. A bipartite

digraghG = (I×O,E) consists of vertices I andO on two separate sides and directed edges

E ⊂ (I×O)∪(O×I), comprising ordered pairs of the form (i, o) or (o, i) (corresponding to

edge originating from i and pointing to o and an edge from o to i, respectively). A rooted
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tree is a bipartite digraph where all vertices have out-degree 1 except the root which has

out-degree 0.2 A rooted forest is a bipartite graph which consists of a collection of disjoint

rooted trees. A spanning rooted forest over I ∪O is a forest comprising vertices I ∪O.

From now on, a spanning forest will be understood as being over I ∪O.

Consider an arbitrary mapping, g : I → O and h : O → I, defined over our finite sets I

and O. Note that such a mapping naturally induces a bipartite digraph with vertices I ∪O
and directed edges with the number of outgoing edges equal to the number of vertices, one

for each vertex. In this digraph, i ∈ I points to g(i) ∈ O while o ∈ O points to h(o) ∈ I.

Such a mapping will be called a bipartite mapping. A cycle of a bipartite mapping is

a cycle in the induced bipartite digraph, namely, distinct vertices (i1, o1, ...., ik−1, ok−1, ik)

such that g(ij) = oj, h(oj) = ij+1, j = 1, ..., k− 1, ik = i1. A random bipartite mapping

selects a composite map h◦g uniformly from a setH×G = IO×OI of all bipartite mappings.

Note that a random bipartite mapping induces a random bipartite digraph consisting of

vertices I ∪ O and directed edges emanating from vertices, one for each vertex. We say

that a vertex in a digraph is cyclic if it is in a cycle of the digraph.

The following lemma states the number of cyclic vertices in a random bipartite digraph

induced by a random bipartite mapping.

Lemma S4. (Jaworski (1985), Corollary 3) The number q of the cyclic vertices in a

random bipartite digraph induced by a random bipartite mapping g : I → O and h : O → I

has an expected value of

E[q] := 2
o∑
i=1

(o)i(n)i
oini

,

where (x)j := x(x− 1) · · · (x− j − 1).

The next theorem on the random structure of TTC proves crucial for the proof of

Lemma S2. Its proof is contained in Che and Tercieux (2017).

Theorem S1. Suppose any round of TTC begins with n agents and o objects remaining in

the market. Then, the probability that there are m ≤ min{o, n} agents assigned at the end

of that round is

pn,o;m =

(
m

(on)m+1

)(
n!

(n−m)!

)(
o!

(o−m)!

)
(o+ n−m).

Thus, denoting ni and oi the number of individuals and objects remaining in the market at

any round i, the random sequence (ni, oi) is a Markov chain.

2Sometimes, a tree is defined as an acyclic undirected connected graph. In such a case, a tree is rooted

when we name one of its vertex a “root.” Starting from such a rooted tree, if all edges now have a direction

leading toward the root, then the out-degree of any vertex (except the root) is 1. So the two definitions

are actually equivalent.
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This theorem shows that the numbers of agents and objects that are assigned in each

round of TTC follow a simple Markov chain depending only on the numbers of agents and

objects at the beginning of that round. It also characterizes the probability structure of

the Markov chain. This theorem implies that there are no conditioning issues at least with

respect to the total numbers of agents and objects that are assigned in each round of TTC.

Namely, one does not need to keep track of the precise history leading up to a particular

economy at the beginning of a round, as far as the numbers of objects assigned in that round

is concerned. Obviously, this result is crucial in rendering Lemma S2 analytically provable.

However, this result alone is not sufficient. We still need to understand the number of

objects that are assigned via short versus long cycles in each round. Unfortunately, the

composition of cycles—long versus short—cleared in each round depends on the precise

history leading up to the economy at the beginning of that round. The next two sections

deal with this issue.

S.3.2 The Number of Objects Assigned via Short Cycles

We begin by noting that TTC induces a random sequence of spanning rooted forests.

Indeed, one could see the beginning of the first round of TTC as a situation where we have

the trivial forest consisting of |I| + |O| trees with isolated vertices. Within this step each

vertex in I will randomly point to a vertex in O and each vertex in O will randomly point to

a vertex in I. Note that once we delete the realized cycles, we again get a spanning rooted

forest. So we can think again of the beginning of the second round of TTC as a situation

where we start with a spanning rooted forest where the agents and objects remaining from

the first round form this spanning rooted forest, where the roots consist of those agents and

objects that had pointed to the entities that were cleared via cycles. Here again objects

that are roots randomly point to a remaining individual and individuals that are roots

randomly point to a remaining object. Once cycles are cleared we again obtain a forest

and the process goes on like this.

Formally, the random sequence of forests, F1, F2, .... is defined as follows. First, we let

F1 be a trivial unique forest consisting of |I|+ |O| trees with isolated vertices, forming their

own roots. For any i = 2, ..., we first create a random directed edge from each root of Fi−1
to a vertex on the other side, and then delete the resulting cycles (these are the agents and

objects assigned in round i− 1) and Fi is defined to be the resulting rooted forest.

We begin with the following question: If round k of TTC begins with a rooted forest

F , what is the expected number of short-cycles that will form at the end of that round?

We will show that, irrespective of F , this expectation is bounded by 2. To show this, we

will make a couple of observations.
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To begin, let nk be the cardinality of the set Ik of individuals in our forest F and let ok
be the cardinality of Ok, the set of F ’s objects. And, let A ⊂ Ik be the set of roots on the

individuals side of our given forest F and let B ⊂ Ok be the set of its roots on the objects

side. Their cardinalities are a and b, respectively.

Now, observe that for any (i, o) ∈ A×B, the probability that (i, o) forms a short-cycle

is 1
nk

1
ok

. For any (i, o) ∈ (Ik\A) × B, the probability that (i, o) forms a short-cycle is
1
nk

if i points to o and 0 otherwise. Similarly, for (i, o) ∈ A × (Ok\B), the probability

that (i, o) forms a short-cycle is 1
ok

if o points to i and 0 otherwise. Finally, for any

(i, o) ∈ (Ik\A)× (Ok\B), the probability that (i, o) forms a short-cycle is 0 (by definition

of a forest, i and o cannot be pointing to each other in the forest F ). So, given the forest

F , the expectation of the number Sk of short-cycles is

E [Sk|Fk = F ] = E

 ∑
(i,o)∈Ik×Ok

1{(i,o) is a short-cycle}

∣∣∣∣Fk = F


=

∑
(i,o)∈Ik×Ok

E
[
1{(i,o) is a short-cycle} |Fk = F

]
=

∑
(i,o)∈A×B

E
[
1{(i,o) is a short-cycle} |Fk = F

]
+

∑
(i,o)∈(Ik\A)×B

E
[
1{(i,o) is a short-cycle} |Fk = F

]
+

∑
(i,o)∈A×(Ok\B)

E
[
1{(i,o) is a short-cycle} |Fk = F

]
=

∑
(i,o)∈A×B

Pr{(i, o) is a short-cycle |Fk = F }

+
∑

(i,o)∈(Ik\A)×B

Pr{(i, o) is a short-cycle |Fk = F }

+
∑

(i,o)∈Ik×(Ok\B)

Pr{(i, o) is a short-cycle |Fk = F }

≤ ab

nkok
+
nk − a
nk

+
ok − b
ok

= 2− aok + bnk − ab
nkok

≤ 2.

Observe that since ok ≥ b, the above term is smaller than 2. Thus, as claimed, we

obtain the following result.3

3Note that the bound is pretty tight: if the forest F has one root on each side and each node which
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Proposition S1. If TTC round k begins with any forest F ,

E [Sk |Fk = F ] ≤ 2.

Given that our upper bound holds for any forest F , we get the following corollary.

Corollary S2. For any round k of TTC, E [Sk] ≤ 2.

S.3.3 The Number of Objects Assigned via Long Cycles

Again consider the unbalanced market in which |I| ≥ |O|, and recall n := |I| and o := |O|.
The Markov property established in Theorem S1 means that the number of agents and

objects assigned in any TTC round depends only on the number of agents and objects that

round begins with, regardless of how many rounds preceded that round and what happened

in those rounds. Hence, the distribution of the (random) number Mk of objects that would

be assigned in any round of TTC that begins with nk agents and ok(≤ nk) objects is

the same as that in the first round of TTC when there are nk agents and ok(≤ nk). In

particular, we can apply Lemma S4 to compute its expected value:4

E[Mk | |Ok| = ok] =
o∑
i=1

(ok)i(nk)i
oikn

i
k

.

We can make two observations: First, the expected number is increasing in ok (and nk)

and goes to infinity as ok (and nk) increases. This can be seen easily by the fact that k−l
k

is increasing in k for any k > l. Second, given our assumption that nk ≥ ok, there exists

ô ≥ 15 such that

E[Mk |ok ] ≥ 3 if ok ≥ ô.

We are now ready to present the main result. Recall that Ô is the (random) set of

objects that are assigned via long cycles in TTC.

Theorem S2. E
[
|Ô|
|O|

]
≥ 1

3
− ô−2

3|O| .

is not a root points to the (unique) root on the opposite side, the expected number of short-cycles given

F is 1
nkok

+ nk−1
nk

+ ok−1
ok
→ 2 as nk, ok → ∞. Thus, the conditional expectation of sk is bounded by 2

and, asymptotically, this bound is tight. However, we can show, using a more involved computation, that

the unconditional expectation of sk is bounded by 1. The details of the computation are available upon

request.
4The number is half of that stated in Lemma S4 since the number of agents cleared in any round is

precisely the half of the cyclic vertices in a random bipartite graph at the beginning of that round. Recall

also that, by definition of TTC, together with our assumption that o ≤ n, given the number of objects ok,

the number of individuals nk is totally determined and is equal to ok + n− o.
5One can check that ô = 13 works. In particular, if nk = ok, E[mk |ok ] ≥ 3 if and only if ok ≥ 13.
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Proof. Consider the following sequence of random variables {E(Lk |ok )}|O|k=1 where ok
is the number of remaining objects at round k while Lk is the number of objects assigned

at round k via long cycles. (Note both are random variables.) Thus, o1 = |O|. Note

that E(L|O|
∣∣o|O|) = 0. By Theorem S1, we are defining here the process {E(Lk |ok )}|O|k=1

induced by the Markov chain {ok}. Note also that E(Lk |ok ) = E[Mk |ok ]−E[Sk |ok ] where

Sk is the number of objects assigned at round k via short cycles. By Proposition S1,

E[Sk |F ] ≤ 2 for any possible forest F , this implies that E[Sk |ok ] ≤ 2. Hence, we obtain

that E(Lk |ok ) ≥ 3 − 2 = 1 if ok ≥ ô. (Recall that ô is defined such that ok ≥ ô implies

E[Mk |ok ] ≥ 3.) Let T be first round at which the E(Lk |ok ) becomes smaller than 1:

formally, E(Lk |ok) ≤ 1 only if k ≥ T (this is well-defined since E(L|O|
∣∣o|O|) = 0). Note

that oT ≤ ô.

Now we obtain:

E[|Ô|] = E(

|O|∑
k=1

Lk)

=
∑
o∈O

Pr{õk = o}
|O|∑
k=1

E
[
Lk
∣∣õk = o

]
=

∑
t

Pr{T = t}
∑
o∈O

Pr{õk = o
∣∣T = t}

|O|∑
k=1

E
[
Lk
∣∣õk = o

]
≥

∑
t

Pr{T = t}
t−1∑
k=1

∑
o∈O

Pr{õk = o
∣∣T = t}E

[
Lk
∣∣õk = o

]
≥

∑
t

Pr{T = t}(t− 1)

= E[T ]− 1

where the last inequality holds by definition of the random variable T . Indeed, whenever

Pr{õk = o
∣∣T = t} > 0 (recall that k < t), E

[
Lk
∣∣õk = o

]
≥ 1 must hold.

Once we have reached round T under TTC, at most ô more short cycles can arise. Thus,

the expected number of short cycles must be smaller than 2E(T ) + ô. Indeed, the expected

number of short cycles is smaller than 2 times the expected number of rounds for TTC to

converge (recall that, by Corollary S2, the expected number of short cycles at each round

is at most two) which itself is smaller than 2E(T ) + ô. It follows that

2E[T ] + ô ≥ E[|O| − |Ô|].

Combining the above inequalities, we obtain that

E[|Ô|] ≥ 1

3
(|O| − ô+ 2) ,
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from which the result follows.

Lemma S2 is a direct corollary of Theorem S2.

S.4 Proof of Theorem 3

Since U(u01, 0) > U(u02, 1)), all objects in O1 are assigned before any agent starts applying

to objects in O2. Hence, the assignment achieved by individuals assigned objects in O1 is

the same as the one obtained when we run DA in the submarket with individuals in I and

objects in O1. The following lemma shows that the agents assigned objects in O1 suffer a

significant number of rejections before getting assigned. This result is obtained by Ashlagi,

Kanoria, and Leshno (2017) and by Ashlagi, Braverman, and Hassidim (2011). We provide

a much simpler direct proof for this result here.6

Lemma S5 (Welfare Loss under Unbalanced Market). Consider an unbalanced submar-

ket consisting of agents I and objects O1, where |I| − |O1| → n(1 − x1) as n → ∞.

Let I1 be the (random) set of agents who are assigned objects in O1, and let Iδ1 := {i ∈
I1|i makes at least δn offers} be the subset of them who each suffer from more than δn re-

jections (before getting assigned objects in O1). Then, there exist γ, δ, υ, all strictly positive,

such that for all n > N for some N > 0,

Pr

{
|Iδ1 |
|I|

> γ

}
> υ.

Proof. Without loss, we work with the McVitie and Wilson’s algorithm (which equiv-

alently implement DA). Consider the individual i = n at the last serial order, at the

beginning of step n. By that step, each object in O1 has surely received at least |I| − |O1|
offers. This is because at least |I| − |O1| − 1 preceding agents must be unassigned, so each

of them must have been rejected by all objects in O1 before the beginning of step n.

Each object receives offers randomly and selects its most preferred individual among

those who have made offers to that object. Since each object will have received at least

|I| − |O1| offers, its payoff must be at least max{η1,o, ...η|I|−|O1|,o}, i.e., the maximum of

|I| − |O1| random draws of its idiosyncratic payoffs. At the beginning of step n, agent n

makes an offer to an object o (i.e., his most favorite object which is drawn iid). Then, for

n to be accepted by o, it must be the case that ηi,o ≥ max{η1,o, ...η|I|−|O1|,o}. This occurs

with probability 1
|I|−|O1| . Thus, the probability that n is assigned o is at most 1

|I|−|O1| .

6The main case studied by Ashlagi, Kanoria, and Leshno (2017) deals with the situation in which the

degree of unbalancedness is small; i.e., |I| − |O1| is sublinear in n. Our proof does not apply to that case.

12



Hence, for any δ ∈ (0, x1), the probability that agent n is rejected δn times in a row is

at least (
1− 1

|I| − |O1|

)δn
→
(

1

e

) δ
1−x1

.

Since agent n is ex ante symmetric with all other agents, for any agent i ∈ I,

lim inf Pr
{
Eδi
}
≥
(

1

e

) δ
1−x1

,

for any δ ∈ (0, x1), where Eδi denotes the event that i makes at least δn offers.

Let Fi := {i ∈ I1} denote the event that agent i is assigned an object in O1, and let

F ci := {i 6∈ I1} be its complementary event. Then, by ex ante symmetry of all agents,

Pr{Fi} = |O1|/n→ x1 as n→∞. For δ ∈ (0, x1), we obtain

Pr
{
Eδi
}

= Pr{Fi}Pr
{
Eδi | Fi

}
+ Pr{F ci }Pr

{
Eδi | F ci

}
→ x1 Pr

{
Eδi | Fi

}
+ (1− x1) · 1 as n→∞,

where the last line obtains since, with probability going to one as n→ 1, an agent who is

not assigned an object in O1 must make at least δn < x1n offers. Combining the two facts,

we have

lim inf Pr
{
Eδi | Fi

}
≥ 1

x1

((
1

e

) δ
1−x1
− (1− x1)

)
.

Observe that the RHS tends to a strictly positive number as δ → 0. Thus, for δ > 0 small

enough (smaller than (1 − x1) log( 1
x1

)), Pr
{
Eδi | Fi

}
is bounded below by some positive

constant for all n large enough.

It thus follows that there exist δ ∈ (0, x1), γ > 0 such that

E
[
|Iδ1 |
|I|

]
=

1

|I|
E

[∑
i∈I1

1Eδi

]

=
1

|I|
EI1E

[∑
i∈I1

1Eδi

∣∣∣∣I1
]

=
|I1|
|I|

EI1E
[
1Eδi |i ∈ I1

]
=
|I1|
|I|

E
[
1Eδi |i ∈ I1

]
=
|I1|
|I|

Pr
{
Eδi |Fi

}
> γ

13



for all n > N for some N > 0, since |I1||I| → x1 as n→∞. The claimed result then follows.

Lemma S5 implies that there exists ε′ > 0, υ′ > 0, γ′ > 0 such that for all n > N ′ for

some N ′ > 0,

Pr

{
|Ĩε|
|I|
≥ γ′

}
≥ υ′,

where Ĩε′ := {i ∈ I|DA(i) ∈ O1, Ui(DA(i)) ≤ U(u1, 1− ε′)} is the set of agents assigned to

objects in O1 but receive payoffs bounded above by U(u1, 1− ε′).
Now consider a matching mechanism µ that first runs DA and then runs a Shapley-

Scarf TTC afterwards, namely the TTC with the DA assignments serving as the initial

endowments for the agents. This mechanism µ clearly Pareto dominates DA. In particular,

if DA(i) ∈ O1, then µ(i) ∈ O1. For any ε′′, let

Ǐε′′ := {i ∈ I|µ(i) ∈ O1, Ui(DA(i)) ≥ U(u1, 1− ε′′)},

be those agents who attain at least U(u1, 1 − ε′′) from µ. By Lemma 1, we have for any

ε′′, γ′′ and υ′′, such that

Pr

{
|Ǐε′′ |
|I|
≤ γ′′

}
< υ′′,

for all n > N ′′ for some N ′′ > 0.

Now set ε′, ε′′ such that ε = ε′ − ε′′ > 0, γ′, γ′′ such that γ := γ′ − γ′′ > 0, and υ′, υ′′

such that υ := υ′ − υ′′ > 0. Observe that Iε(µ|DA) ⊃ Ĩε′ \ Ǐε′′ , so |Iε(µ|DA)| ≥ |Ĩε′ | − |Ǐε′′ |.
It then follows that for all n > N := max{N ′, N ′′},

Pr

{
|Iε(µ|DA)|
|I|

≥ γ

}
≥ Pr

{
|Ĩε′ |
|I|
− |Ǐε

′′ |
|I|
≥ γ

}

≥ Pr

{
|Ĩε′ |
|I|
≥ γ′ and

|Ǐε′′ |
|I|
≤ γ′′

}

≥ Pr

{
|Ĩε′ |
|I|
≥ γ′

}
− Pr

{
|Ǐε′′|
|I|

> γ′′
}

≥ υ′ − υ = υ.

S.5 The Erdös-Renyi mechanim

We first briefly recall the Erdös-Renyi theorem mentioned in the paper. It is thus worth

introducing the relevant model of random graph. A bipartite graph G consists in vertices,

V1 ∪ V2, and edges E ⊂ V1 × V2 across V1 and V2 (with no possible edges within vertices

14



in each side). A perfect bipartite matching is a bipartite graph in which each vertex is

involved in exactly one edge. A random bipartite graph B = (V1 ∪ V2, p), p ∈ (0, 1), is a

bipartite graph with vertices V1 ∪ V2 in which each pair (v1, v2) ∈ V1 × V2 is linked by an

edge with probability p independently (of edges created for all other pairs). In this context,

the Erdös-Renyi theorem can be stated as follows.

Theorem S3. Consider a random bipartite graph B = (V1 ∪ V2, p) where 0 < p < 1 is a

constant and for each i ∈ {1, 2} and |V1| = |V2| = n. Then, the probability that the random

graph admits a perfect bipartite graph—i.e., the probability that one can construct a perfect

bipartite graph using a subset of edges—goes to one as n→∞.

Hence, in our environment where we draw randomly individuals’ preferences and ob-

jects’ priorities, one can build an associated random bipartite graph which consists of

vertices I ∪ O and where an edge between (i, o) is added if and only if ξi,o > 1 − ε and

ηi,o > 1− ε. Applying the Erdös-Renyi theorem we obtain that with probability approach-

ing 1 as |I| = |O| = n increases, a (perfect bipartite) matching exists where all objects

and agents realize idiosyncratic payoffs greater than 1 − ε.7 Hence, one could construct

a mechanism in which (1) agents and objects (more precisely their suppliers) report their

idiosyncratic shocks (2) given such a reports a bipartite graph is built where an edge be-

tween an agent and an object if and only if ξi,o > 1− ε and ηi,o > 1− ε and (3) a maximal

bipartite matching is selected.8 Such mechanism would select a perfect matching when-

ever it exists. Under truthful reports, this occurs with probability approaching 1 as the

market size increases. Thus, by construction, this mechanism is asymptotically efficient

and asymptotically stable. In addition, well-known polynomials algorithms such as the

augmenting path algorithm would find a maximal matching.

However, as stated in the paper, this mechanism would not be desirable for several

reasons. First, it would not work if the agents cannot tell apart common values from

idiosyncratic values. More importantly, the mechanism would not have a good incentive

property. An agent will be reluctant to report the objects in lower tiers even though they

have high idiosyncratic preferences. Indeed, if he expects that with significant probability,

he will not get any object in the highest tier, he will have incentives to claim that he

enjoys high idiosyncratic payoffs with a large number of high tier objects and that all his

idiosyncratic payoffs for the other tiers are low. It is very likely that there is a perfect

matching even under this misreport and this will ensure him to get matched with a high

tier object.

7The unbalanced case can be treated with almost no modifications.
8A maximal bipartite matching is a matching that contains the largest possible number of edges.
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S.6 Completion of the Proof of Theorem 4

We start by showing that DACB with κ ≥ log2(n) and κ = o(n) is asymptotically efficient.

Let µ := DACB, we have to show that for any ε > 0, and any mechanism µ′ that weakly

Pareto-dominates µ
Iε(µ

′ |µ)

n

p−→ 0

where we recall that Iε(µ
′ |µ) := {i ∈ I |U(µ(i)) < U(µ′(i))− ε}.

We first introduce some notations: In the sequel, for an arbitrary collection of sets

{Xk}Kk=1, we let X<k (resp. X≤k) be the set ∪`<kXk (resp. ∪`≤kXk). Note that X<1 = ∅.
We fix any mechanism µ′ that weakly Pareto-dominates µ and any ε > 0 small enough so

that U(uk, 1)− ε > U(uk+1, 1) for all k = 1, ..., K − 1.

Now, fix k ≥ 1 and let I ′k := {i ∈ I|µ(i) ∈ Ok} be the set of individuals matched to

objects in Ok under matching µ′ and recall that Ik is the set of individuals matched to

objects in Ok under matching µ. By definition, |I ′<k| = |I<k|. Let

Īk := {i ∈ Ik |U(µ(i)) ≥ U(uk, 1)− ε} and Îε,k(µ
′ |µ) := {i ∈ Ik |U(µ(i)) ≥ U(µ′(i))− ε}.

Then, for any i ∈ Īk\I ′<k, U(µ(i)) ≥ U(uk, 1) − ε ≥ U(µ′(i)) − ε. Hence, we must have

Īk\I ′<k ⊂ Îε,k(µ
′ |µ). Observe next Ī<k ⊂ I ′<k. This follows since, if i ∈ Ī<k (note that this

implies k ≥ 2), then by definition U(µ′(i)) ≥ U(µ(i)) ≥ U(uk−1, 1) − ε > U(uk, 1) and so

i ∈ I ′<k.
We fix γ′ < 1 and show that, as n→∞,

Pr


∣∣∣Îε,k(µ′ |µ)

∣∣∣
|Ik|

≥ γ′

→ 1.

For k = 1, as n→∞,

Pr


∣∣∣Îε,1(µ′ |µ)

∣∣∣
|I1|

≥ γ′

 ≥ Pr

{∣∣Ī1\I ′<1

∣∣
|I1|

≥ γ′

}
= Pr

{∣∣Ī1∣∣
|I1|
≥ γ′

}
→ 1,

by Proposition 1. Next consider k ≥ 2 and fix any δ > 0 such that γ′ + δ < 1. Then, as
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n→∞,

Pr


∣∣∣Îε,k(µ′ |µ)

∣∣∣
|Ik|

≥ γ′

 ≥ Pr

{∣∣Īk\I ′<k∣∣
|Ik|

≥ γ′

}

= Pr

{∣∣Īk\ ((I ′<k ∩ Ī<k) ∪ (I ′<k\Ī<k)
)∣∣

|Ik|
≥ γ′

}

≥ Pr

{∣∣Īk\(I ′<k ∩ Ī<k)∣∣− ∣∣I ′<k\Ī<k∣∣
|Ik|

≥ γ′

}

= Pr

{∣∣Īk∣∣
|Ik|
−
∣∣I ′<k\Ī<k∣∣
|Ik|

≥ γ′

}

= Pr

{∣∣Īk∣∣
|Ik|
−

(
|I ′<k|
|Ik|

−
∣∣Ī<k∣∣
|Ik|

)
≥ γ′

}

≥ Pr

{∣∣Īk∣∣
|Ik|
≥ γ′ + δ and

(
|I ′<k|
|Ik|

−
∣∣Ī<k∣∣
|Ik|

)
≤ δ

}

= Pr

{∣∣Īk∣∣
|Ik|
≥ γ′ + δ and

∣∣Ī<k∣∣
|I<k|

≥ 1− δ |Ik|
|I<k|

}
→ 1,

where the second equality holds since Īk ∩ Ī<k = ∅, which implies Īk\(I ′<k ∩ Ī<k) = Īk;

the third equality holds since Ī<k ⊂ I ′<k; the last equality uses |I ′<k| = |I<k|; and the

convergence result follows from Proposition 1.

To complete the argument, fix any γ > 0. The, the desired result holds since

Pr

{
|Iε(µ′ |µ)|

n
≥ γ

}
= Pr


K∑
k=1

∣∣∣Îε,k(µ′ |µ)
∣∣∣

n
< 1− γ


≤ Pr


∣∣∣Îε,k(µ′ |µ)

∣∣∣
n

<
1− γ
K

for some k


≤

K∑
k=1

Pr


∣∣∣Îε,k(µ′ |µ)

∣∣∣
n

<
1− γ
K


=

K∑
k=1

1− Pr


∣∣∣Îε,k(µ′ |µ)

∣∣∣
n

≥ 1− γ
K


→ 0

as n→∞, where the second inequality uses the union bound, and the convergence follows

from the above arguments (with γ′ := 1−γ
K

).
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We now prove that DACB with κ ≥ log2(n) and κ = o(n) is asymptotically stable. We

must show that
|Jε(µ)|
n(n− 1)

p−→ 0,

where we recall that Jε(µ) := {(i, o) ∈ I ×O |Ui(o) > Ui(µ(i)) + ε and Vo(i) > Vo(µ(o)) + ε}.
Fix any γ > 0, we have

Pr

{
|Jε(µ)|
n(n− 1)

≥ γ

}
≤ Pr

{
|I × {o ∈ O |V (1) > Vo(µ(o)) + ε}|

n(n− 1)
≥ γ

}
= Pr

{
|{o ∈ O |V (1) > Vo(µ(o)) + ε}|

n− 1
≥ γ

}
= Pr

{
1

n− 1

K∑
k=1

|{o ∈ Ok |V (1) > Vo(µ(o)) + ε}| ≥ γ

}

≤ Pr

{
1

n− 1
|{o ∈ Ok |V (1) > Vo(µ(o)) + ε}| ≥ γ

K
for some k

}
≤

K∑
k=1

Pr

{
1

n− 1
|{o ∈ Ok |V (1) > Vo(µ(o)) + ε}| ≥ γ

K

}

=
K∑
k=1

Pr

{
|{o ∈ Ok |V (1) > Vo(µ(o)) + ε}|

|Ok|
≥ γ

K

n− 1

|Ok|

}
→ 0

as n → ∞, where the last inequality is by the union bound while the convergence result

holds by Proposition 1.

S.7 Convergence Rates for DACB

In the sequel, we consider DACB where j(n) = 1 and 5 log2(n) ≤ κ(n) = o(n). Fix any

ε > 0, δ > 0 and µ′ which Pareto-dominates µ := DACB. We want to show that

Pr

{
|Iε(µ′ |µ)|

n
< δ

}
converges to 1 at a rate greater than 1/n. (Formally, we show that for all γ > 0, there

exists N such that for any n > N , Pr
{
|Iε(µ′|µ )|

n
< δ
}
≥ γ

(
1− 1

n

)
which is usually denoted

by Pr
{
|Iε(µ′|µ )|

n
< δ
}

= ω
(
1− 1

n

)
.)

We will actually show a stronger result:

Pr

{
|Iε(µ′ |µ)|

n
= 0

}
18



converges to 1 at an order greater than 1/n. Given our arguments in the paper, it is enough

to show that

Pr
{
∀i ∈ I : ξi,µ(i) ≥ 1− ε

}
converges to 1 at an order greater than 1/n. Because of this, note that the rate of conver-

gence does not depend on the specific choice of µ′.

We know from the proof of Proposition 1 that
{
∀i ∈ I : ξi,µ(i) ≥ 1− ε

}
holds whenever

for each k = 1, ..., K, the following two events are satisfied (1) Ek
1 : “all agents’ κ(n) favorite

objects in Ok yield an idiosyncratic payoff higher than 1 − ε” and (2) Ek
2 : “all objects in

tier k are assigned in Stage k”. By the proof of Lemma S1-(i), we know there is ρ > 0, so

that for n large enough (i.e., such that κ(n) ≤ ρn),

Pr(Ek
1 ) ≥ 1− Pr {∃i ∈ I : Xi ≤ ρ |Ok|} ≥ 1− n

exp(cn)

where c > 0 and Xi is the number of objects in Ok with which i enjoys an idiosyncratic

payoff higher than 1− ε.
Now, to compute Pr(Ek

2 ), recall that Ek
2 holds whenever the following two events hold:

F k
1 : “all agents’ κ(n) favorite objects in O≥k are in Ok” and F k

2 : “when at the beginning

of Stage k, we restrict our attention to the submarket composed of the agents (among

remaining ones) with the |Ok| lowest serial orders and to objects in Ok then DA converges

before an agent has made more than κ(n) offers”. In the sequel, without loss of generality,

we assume that ε is small enough so that uk + 1− ε > uk+1 + 1 for each k = 1, ..., K−1. By

our choice of ε > 0, we know that Pr(F k
1 ) ≥ Pr(Ek

1 ) ≥ 1 − n
exp(cn)

. Now, by Pittel (1992)

we know that whenever κ(n) ≥ 5 log2(n),

Pr(F k
2 ) ≥ 1−O(

1

nd
)

where d > 1.
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From the above, we obtain

Pr
{
∀i ∈ I : ξi,µ(i) ≥ 1− ε

}
≥ Pr

(
K⋂
k=1

(Ek
1 ∩ Ek

2 )

)

≥ Pr

(
K⋂
k=1

(Ek
1 ∩ F k

1 ∩ F k
2 )

)

≥
K∑
k=1

Pr(Ek
1 ∩ F k

1 ∩ F k
2 )− (K − 1)

≥
K∑
k=1

(
Pr(Ek

1 ) + Pr(F k
1 ) + Pr(F k

2 )− 2
)
− (K − 1)

≥
K∑
k=1

(
1− n

exp(cn)
+ 1− n

exp(cn)
+ 1−O(

1

nd
)− 2

)
− (K − 1)

= 1− 2K
n

exp(cn)
−KO(

1

nd
) = 1−O(

1

nd
)

where the third and fourth inequality come from iterative applications of the rule Pr(A ∩
B) ≥ Pr(A) + Pr(B)− 1. Since d > 1, we obtain the desired result.

Let us move to a similar exercice but now for objects. Fix any ε > 0, δ > 0 and let

µ := DACB. We want to show that

Pr

{
|Jε(µ)|
n(n− 1)

< δ

}
converges to 1 at a rate greater than 1/n. Fix any function f(n) = o(n) which satisfies

f(n)/ (n/ log(n))→∞.

We start by showing that for n large enough and for each k = 1, ..., K :

Pr

{
|{o ∈ Ok |V (µ(o)) ≥ V (1)− ε}|

n− 1
>

δ

K

}
≥ 1−O(n−d)

where d > 1. We prove it below for k = 1, the proof for the other tiers is similar.

We know by the argument in the proof of Proposition 1 that whenever the event F 1
1 :

“all agents’ κ(n) favorite objects in O are in O1” holds then as long as agents make less

than κ(n) offers in Stage 1, DACB is the same as DA in the submarket composed only

of agents with a serial order below |O1| and of all objects in O1. Again, by Pittel (1992),

because κ(n) ≥ 5 log2(n) ≥ 5 log2(|O1|) with probability greater than 1 − O(n−d1) where

d1 > 1, DA assigns all objects in O1 before any agent makes more than κ(n) offers. Hence,
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with probability greater than 1−O(n−d1), the |O1| first steps of DACB are exactly the same

as those in DA in the submarket. In addition, we know that under DA in this submarket:

Pr

{
1

|O1|
∑
o∈O1

RDA
o ≤ 2

|O1|
log(|O1|)

}
≥ 1−O(n−d2)

where d2 > 1 and where the inequality holds by the main proposition in Pittel (1989).

Now, for n large enough we have

Pr

{∣∣{o ∈ O1

∣∣RDA
o ≤ f(n)

}∣∣
|O1|

≥ 1− δ

K

}
≥ Pr

{
1

|O1|
∑
o∈O1

RDA
o ≤ 2

|O1|
log(|O1|)

}
≥ 1−O(n−d2)

where the first inequality holds because f(n)/ (n/ log(n)) → ∞.9 We obtain that (con-

ditional on F 1
1 ) the joint event

{
|{o∈O1|RDAo ≤f(n)}|

|O1| ≥ 1− δ
K

}
and “the |O1| first steps of

DACB are exactly the same as those in DA in the submarket” occurs with probability

greater than 1−O(n−d1)−O(n−d2) = 1−O(n−d) where d > 1. Finally, if for each o ∈ O1,

we denote RDACB
o the rank of the match obtained by object o under DACB, we must have

that conditional on F 1
1 occurring,

Pr

{∣∣{o ∈ Ok

∣∣RDACB
o ≤ f(n)

}∣∣
|Ok|

≥ 1− δ

K

}
≥ 1−O(n−d).

9For a contradiction, suppose there exists a sequence of {nk}∞k=1 such that nk →∞ satisfying

Pr

{∣∣{o ∈ O1

∣∣RDAo ≤ f(nk)
}∣∣

|O1|
≥ 1− δ

K

}
< Pr

{
1

|O1|
∑
o∈O1

RDAo ≤ 2
|O1|

log(|O1|)

}
.

Then, we would have

Pr

{∣∣{o ∈ O1

∣∣RDAo > f(nk)
}∣∣

|O1|
>

δ

K

}
> Pr

{
1

|O1|
∑
o∈O1

RDAo > 2
|O1|

log(|O1|)

}
. (S0)

Next, observe
|{o∈O1|RDA

o >f(nk)}|
|O1| > δ

K =⇒ 1
|O1|

∑
o∈O1

RDAo > δ
K f(nk). Hence, for nk large enough (using

the fact that f(n)/ (n/ log(n))→∞ implies δ
K f(n) > 2 |O1|

log(|O1|) ), we must have

Pr

{∣∣{o ∈ O1

∣∣RDAo > f(nk)
}∣∣

|O1|
>

δ

K

}
≤ Pr

{
1

|O1|
∑
o∈O1

RDAo > 2
|O1|

log(|O1|)

}
.

This contradicts (S0).
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Denote by H1 the event

{
|{o∈O1|RDACBo ≤f(n)}|

|O1| ≥ 1− δ
K

}
. We obtain that

Pr(H1) ≥ Pr(H1
∣∣F 1

1 ) Pr(F 1
1 )

≥
(
1−O(n−d)

)(
1− n

exp(cn)

)
= 1−O(n−d).

By the proof of Lemma S1-(iii), there must exist ρ > 0 small enough so that, with

probability greater than 1 − n
exp(cn)

, for each object o ∈ O1, the ρn individuals with the

highest priority yield o a payoff higher than V (1) − ε. Now, for n large enough, we have

f(n)/n ≤ ρ (since f(n) = o(n)). Hence, for n large enough, with probability greater than

1 − n
exp(cn)

, for each object in O1, the f(n) individuals with the highest priority yield o a

payoff higher than V (1)− ε (call this event G1). Hence, we obtain that for n large enough

Pr

{
|{o ∈ O1 |V (µ(o)) ≥ V (1)− ε}|

n− 1
≥ 1− δ

K

}
≥ Pr

(
G1 ∩H1

)
≥ Pr

(
G1
)

+ Pr
(
H1
)
− 1

≥ 1− n

exp(cn)
−O(n−d) = 1−O(n−d),

as was to be shown.

Now, we can complete the proof as follows

Pr

{
|Jε(µ)|
n(n− 1)

< δ

}
≥ Pr

{
K∑
k=1

|I × {o ∈ Ok |V (µ(o)) ≤ V (1)− ε}|
n(n− 1)

< δ

}

≥ Pr

{
∀k = 1, ..., K :

|{o ∈ Ok |V (µ(o)) ≤ V (1)− ε}|
n− 1

<
δ

K

}
= 1− Pr

{
∃k = 1, ..., K :

|{o ∈ Ok |V (µ(o)) ≤ V (1)− ε}|
n− 1

≥ δ

K

}
≥ 1−K Pr

{
|{o ∈ Ok |V (µ(o)) ≤ V (1)− ε}|

n− 1
≥ δ

K

}
= 1−K

(
1− Pr

{
|{o ∈ Ok |V (µ(o)) ≥ V (1)− ε}|

n− 1
≥ 1− δ

K

})
= 1−O(n−d).

S.8 Proof of Theorem 5

Let f : I → {1, . . . , n} denote the serial orders for the agents. Recall by the basic uncer-

tainty assumption, the distribution of the serial orders is such that for each agent i and

any ` = 1, . . . , n, Pr{f(i) = `} goes to 0 as n goes to infinity.
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Let us fix ε > 0 and k = 1, ..., K. Assume that f gives to agent i a serial order in

{|O≤k−1|+2, ..., |O≤k|} with the convention that |O≤0|+2 = 1. We show that there is N ≥ 1

such that for any n ≥ N , for any vector of cardinal utilities (ûo)o∈O := (Ui(uo, ξio))o∈O, i

cannot gain more than ε by deviating given that everyone else reports truthfully. As will

be clear, the argument does not depend on the specific serial order of i within {|O≤k−1|+
2, ..., |O≤k|} and since there are finitely many tiers, N can be taken to be uniform across

all individuals with serial order in ∪Kk=1{|O≤k−1| + 2, ..., |O≤k|}. Hence, conditional on the

event that i’s serial order is in {|O≤k−1| + 2, ..., |O≤k|} for some k = 1, ..., K, it will follow

that for any n ≥ N , for any vector of cardinal utilities, i cannot gain more than ε by

deviating given that everyone else reports truthfully. Now, by assumption, the probability

of the event that i’s serial order is in {|O≤k−1| + 2, ..., |O≤k|} for some k = 1, ..., K tends

to 1 as n goes to infinity and so even without conditioning, i cannot gain more than ε by

deviating given that everyone else reports truthfully.

Before starting the proof of Theorem 5, we state the following lemma.

Lemma S6. Let us assume that κ(n) ≥ log2(n) and κ(n) = o(n) and consider DACB

mechanism where all agents report truthfully. Fix any k = 1, . . . , K and any agent i with a

serial order in {|O≤k−1|+2, ..., |O≤k|}. Assuming all agents report truthfully, the probability

that i is matched at Stage k converges to 1 as n goes to infinity.

Proof. By the argument in the proof of Proposition 1, we know that with probability

approaching 1 as n goes to infinity, Step |O≤k| ends under DACB and, for any agent i with

a serial order in {|O≤k−1| + 2, ..., |O≤k|}, the outcome of DACB at the end of that step

coincides with that of DA in the submarket composed only of individuals with serial orders

in {|O≤k−1|+ 2, ..., |O≤k|} together with the individual who was rejected at the last step of

Stage k− 1 (if k ≥ 2) and only of objects in Ok. Since the outcome of DA does not depend

on the specific serial order used, under the event that the outcome of DACB at the end of

Step |O≤k| coincide with that of DA in that submarket, if we permute the ordering of agents

with serial orders in {|O≤k−1| + 2, ..., |O≤k|} the outcome of DACB at Step |O≤k| remains

the same and so the final outcome of DACB remains the same. Thus, conditional on this

event, for each agent with a serial order in {|O≤k−1| + 2, ..., |O≤k|}, the probability of not

being matched by the end of Stage k is the same. Hence, since the number of such agents

goes to infinity as n grows, this probability must go to 0 as n goes to infinity. Since the

conditional event has a probability converging to 1 as n goes to infinity, (unconditionally)

the probability of not being matched by the end of Stage k must go to 0 as n goes to

infinity.

In the sequel, we assume that all individuals other than i report truthfully their prefer-

ences. We partition the set of possible reports into two sets T1 and T2 as follows. T1 consists

of the set of reports that, when restricted to objects in O≥k, only contain objects in Ok
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within the κ first objects. T2 consists of the set of reports which, when restricted to objects

in O≥k contain some object outside Ok within the κ first objects.

We will be using the following terminology: Fix a set of possible reports T . Given

an event EPi which may depend on i’s report Pi, we will say that the probability of EPi
converges to 1 uniformly across all reports in T if for any ε > 0, there is N such that for

any n ≥ N , Pr(EPi) ≥ 1− ε for any report Pi in T .

Recall that i’s serial order is in {|O≤k−1| + 2, ..., |O≤k|}. In the sequel, given agent i’s

report, we define p(r) to be the probability of obtaining the r-th ranked object within the

O≥k objects (we abuse notations and forget about the dependence of p(r) on i’s report).

Lemma S7. If i’s report is of type T1, then
∑κ

r=1 p(r) converges to 1. In addition, the

convergence is uniform across all possible reports in T1. If i’s report is of type T2, then∑`
r=1 p(r) converges to 1 where ` ≤ κ is the rank (within the O≥k objects) of the first object

outside Ok. In addition, the convergence is uniform across all possible reports in T2.10

Proof. Consider E the event under which, independently of i’s reported preferences,

provided that all individuals from 1 to |O≤k−1|+ 1 report truthfully their preferences over

objects in O≤k−1, for each k′ = 1, ..., k−1, the objects assigned in stage k′ are exactly those

in Ok′ . By our argument in the proof of Proposition 1, the probability of that event tends

to 1. By construction, the convergence is uniform over all of i’s possible reports. From

now on, let us condition on the realization of event E . By Lemma S6, we know that with

(conditional) probability going to 1, i is matched within Stage k.11 In addition, by ex ante

symmetry of objects within a given tier (given our conditioning event E , the way i ranks

objects in O≤k−1 does not matter), the rate at which the conditional probability goes to

1 is the same for each report in T1. But given that Pr(E) goes to 1 uniformly across all

possible i’s reports, the unconditional probability that i is matched within Stage k also

converges to 1 uniformly across these reports. This proves the first part of the lemma.

Now, we move to the proof of the second part of the lemma. Let us consider the event

that for each k′ = 1, ..., K, all individuals other than i only rank objects in Ok′ within their

κ most favorite objects in O≥k′ . Consider as well event E as defined above and let F be

10More precisely, we mean that for any ε > 0, there is N such that for any n ≥ N ,
∑`
r=1 p(r) ≥ 1 − ε

for any ` ≤ κ and for any report of i which, restricted to objects in O≥k contains an object outside Ok at

rank ` (where the rank is within objects in O≥k).
11The only difference with Lemma S6 is that i’s report on his preferences may not be truthful and so

cannot be considered to be drawn randomly. However, it should be clear that the argument goes through

as long as i’s report is independent of his opponents’ preferences which must be true in the environment

we are considering where types are drawn independently and so where players play independently. That

the conditional probability of the event “i is matched within Stage k” tends to 1 comes from the facts that

the unconditional probability of the event tends to 1 and that the conditioning event E has a probability

which tends to 1.
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the intersection of these two events. By Lemma S1-(ii) as well as Proposition 1, we know

that Pr(F) goes to 1 as n goes to infinity. By construction, the convergence is uniform

over all of i’s possible reports. Note that under event F no individual other than i will

make an offer to an object outside Ok within Stage k. In addition, under F , the probability

that i is matched in Stage k goes to 1 as n goes to infinity uniformly across any report of

i in T2.12 Combining these observations, it must be the case that the probability that “i

is matched to the object outside Ok with rank ` or to a better-ranked object” converges

to 1 uniformly across all possible i’ reports in T2. In addition, we know that, under F , i

can only be matched to an object in O≥k, hence, we get that conditional on F ,
∑`

r=1 p(r)

converges to 1 uniformly across i’s possible reports. Given that Pr(F) goes to 1 uniformly

across all possible i’s reports, this statement holds for unconditional probabilities as well,

as was to be shown.

Since T1 and T2 cover the set of all possible reports of individual i, we get

Corollary S3. For any i’s report, we have that
∑κ

r=1 p(r) converges to 1. Convergence is

uniform across all of i’s reports.

In the sequel, we condition on event E defined in the proof of the above lemma, i.e.,

the event that, irrespective of i’s reported preferences, all objects in O≤k−1 are gone when

Stage k starts. As we already said, the probability of E converges to 1 uniformly across

all possible i’s reports. Now, we fix a type (ûo)o∈O := (Ui(uo, ξio))o∈O of individual i and

consider two cases depending on whether his true preference order falls into T1 or T2.
Case 1: Assume that individual i’s true preference order falls into T1. Clearly, the ex-

pected utility of telling the truth is higher than
∑κ

r=1 pT (r)ûr where pT (r) is the probability

of getting the r-th best ranked object within the O≥k objects (and hence within the Ok

objects since i’s type falls into T1) when reporting truthfully and ûr is i’s utility for the

object with rank r within the O≥k. By the above lemma, if i reports truthfully, then with

probability going to 1 as n goes to infinity, he gets one of his κ most favorite objects within

O≥k, thus, for some N1 ≥ 1, and for all n ≥ N1,
∑κ

r=1 pT (r) + ε
2U(1,1)

≥ 1.

12Indeed, the probability that i gets matched in Stage k under a report in T2 is larger than the probability

that i gets matched in Stage k under the report where within the κ first objects in O≥k, any object outside

Ok is replaced by an object in Ok. To see this, let ` be the rank (within O≥k) of the first object outside

Ok under the original report. Observe that under F , i cannot get matched to an object in a tier k′ < k.

In addition, if under the modified report, i gets matched to an object with a rank (within O≥k) strictly

smaller than ` then, by definition of DACB, i will obtain the same match under the original report. Now,

if i gets matched to an object with a rank (within O≥k) larger than ` then, under the original report, i

applies to an object in O>k and so, under F , by definition of DACB, i gets matched to that object. Since

the modified report is in T1, and, as we already showed, the probability that i is matched in Stage k goes

to 1 as n goes to infinity uniformly across any report of i in T1, this completes our argument.
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Let us consider a lie of individual i. Given our conditioning event, what matters are

the reports within objects in O≥k. In addition, given the symmetry of objects within each

tier, it is optimal, and thus we assume, that agent i orders the objects within each tier

truthfully among them.13 Thus, we can restrict attention to a lie in which an agent lists

truthfully objects in Ok for ranks 1 to `− 1 and lists an object in O>k for rank `, for some

` (the ranks here are that within O≥k objects). Clearly, if ` > κ then, by the previous

lemma, irrespective of the exact form of the lie, for n large enough, the lie cannot benefit

agent i by more than ε. Thus, we assume without loss that ` ≤ κ. By definition of DACB,

for each r = 1, ..., `− 1 individual i still has probability pT (r) to get the object with rank

r under the false report. But now he has probability pL(`) to get matched to the object in

O>k. Now, recall that for all n ≥ N1,
∑κ

r=1 pT (r) + ε
2U(1,1)

≥ 1. This implies that for all

n ≥ N1,
∑κ

r=1 pT (r) + ε
2U(1,1)

≥
∑`−1

r=1 pT (r) + pL(`) and so
∑κ

r=` pT (r) + ε
2U(1,1)

≥ pL(`). In

addition, we know by the above lemma that
∑`−1

r=1 pT (r) + pL(`) converges to 1 uniformly

across all possible deviations of individual i. Since, given our conditioning event, i has

zero probability to get an object in O≤k−1, there must exist some N2 ≥ 1 so that for all

n ≥ N2, i’s expected payoff when he lies is smaller than
∑`−1

r=1 pT (r)ûr + pL(`)û∗+ ε
2
, where

û∗ is the utility for agent i of the best object in O>k. Clearly, û∗ < ûr for each r = 1, ..., κ

(recall that i’s type falls into T1). In the sequel, we fix n ≥ max{N1, N2}. We obtain that,

conditional on E , the expected payoff when lying is smaller than

`−1∑
r=1

pT (r)ûr + pL(`)û∗ +
ε

2
≤

`−1∑
r=1

pT (r)ûr +
κ∑
r=`

pT (r)û∗ + û∗
ε

2U(1, 1)
+
ε

2

≤
`−1∑
r=1

pT (r)ûr +
κ∑
r=`

pT (r)û∗ + ε

≤
`−1∑
r=1

pT (r)ûr +
κ∑
r=`

pT (r)ûr + ε

where the first inequality uses the fact that n ≥ N1 and so that
∑κ

r=` pT (r)+ ε
2U(1,1)

≥ pL(`).

The second inequality holds since û∗ ≤ U(1, 1). The last inequality holds because û∗ < ûr
for each r = 1, ..., κ. Since the expected payoff of the truth is larger than

∑κ
r=1 pT (r)ûr,

we conclude that, conditional on E , lying cannot make i gain more than ε whenever n ≥
max{N1, N2}.14 Since E has a probability going to 1 uniformly across all possible deviations

of individual i, a same result holds for unconditional expected payoffs.

13That is, for any object o and o′ which both belong to the same tier k, if i prefers o to o′ then i ranks

o ahead of o′.
14Notice that by the uniform convergence result in the above lemma, N1 and N2 are independent on i’s

specific report.
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Case 2: Assume that individual i has a type which falls into T2. Consider the κ best

objects in O≥k and let R be the rank (here again, the rank is taken among O≥k objects)

of the best object in O>k. Clearly, the expected utility of truth-telling is higher than∑R
r=1 pT (r)ûr where pT (r) is the probability of getting object with rank r within the O≥k

objects when reporting truthfully. By the above lemma, if i reports truthfully, then with

probability going to 1 as n → ∞, i gets one of his R most favorite objects within O≥k.

Thus, for some N1 ≥ 1, and for all n ≥ N1,
∑R

r=1 pT (r) + ε
2U(1,1)

≥ 1.

Let us consider a lie by individual i. Given our conditioning event, what matters are

the reports within objects in O≥k. In addition, given the symmetry of objects within

each tier, we can assume without loss of generality that agent i orders the objects within

each tier truthfully among them. Let us first consider a lie where the first object in O>k

is ranked at R′ < R (here again, the rankings are those within O≥k). Thus, one can

think of such a lie as a report in which for ranks from rank 1 to rank R′ − 1 (the rank

here is that within O≥k objects) the agent lists truthfully among objects in Ok and for

rank R′, the agent lists an object in O>k. In that case, by definition of DACB, for each

r = 1, ..., R′ − 1 individual i still has probability pT (r) to get the object with rank r. But

now he has probability pL(R′) to get matched to the object in O>k listed at rank R′. Now,

recall that for all n ≥ N1,
∑R

r=1 pT (r) + ε
2U(1,1)

≥ 1. This implies that for all n ≥ N1,∑R
r=1 pT (r) + ε

2U(1,1)
≥
∑R′−1

r=1 pT (r) + pL(R′) and so
∑R

r=R′ pT (r) + ε
2U(1,1)

≥ pL(R′). In

addition, we know by the above lemma that
∑R′−1

r=1 pT (r)+pL(R′) converges to 1 uniformly

across all possible deviations of individual i. Since, given our conditioning event, i has zero

probability to get an object in O≤k−1, there must exist some N2 ≥ 1 so that for all n ≥ N2,

i’s expected payoff when he lies is smaller than
∑R′−1

r=1 pT (r)ûr + pL(R′)û∗ + ε
2
, where û∗

is the utility of the object in O>k listed for rank R′ and so must satisfy û∗ ≤ ûr for each

r = 1, ..., R. In the sequel, we fix n ≥ max{N1, N2}. We obtain that, conditional on E , the

expected payoff when lying is smaller than

R′−1∑
r=1

pT (r)ûr + pL(R′)û∗ +
ε

2
≤

R′−1∑
r=1

pT (r)ûr +
R∑

r=R′

pT (r)û∗ + û∗
ε

2U(1, 1)
+
ε

2

≤
R′−1∑
r=1

pT (r)ûr +
R∑

r=R′

pT (r)û∗ + ε

≤
R′−1∑
r=1

pT (r)ûr +
R∑

r=R′

pT (r)ûr + ε

where the first inequality uses the fact that n ≥ N1 which implies
∑R

r=R′ pT (r) + ε
2U(1,1)

≥
pL(R′). The second inequality holds since û∗ ≤ U(1, 1). The last inequality holds be-

cause û∗ ≤ ûr for each r = 1, ..., R. Since the expected payoff of the truth is larger than
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∑R
r=1 pT (r)ûr, we conclude that, conditional on E , lying cannot benefit agent i by more

than ε whenever n ≥ max{N1, N2}. Since, as n increases, the probability of E converges to

1 uniformly across all possible deviations of individual i, the same result holds for uncon-

ditional expected payoffs.

Consider next a lie which lists the best object in O>k for rank R′ ≥ R (recall that the

rankings are those within O≥k). Here again, without loss of generality, one can think of

such a lie as a report in which for ranks 1 to R − 1 (the rank here is that within O≥k
objects) the agent lists truthfully among objects in Ok. In that case, by definition of

DACB, for each r = 1, ..., R − 1 individual i still has probability pT (r) to get the object

with rank r. But now he has probability pL(r) to get matched to the object with rank

r for each r = R, ..., R′. Now, recall that for all n ≥ N1,
∑R

r=1 pT (r) + ε
2U(1,1)

≥ 1. This

implies that for all n ≥ N1,
∑R−1

r=1 pT (r)+pT (R)+ ε
2U(1,1)

≥
∑R−1

r=1 pT (r)+
∑R′

r=R pL(r) and so

pT (R)+ ε
2U(1,1)

≥
∑R′

r=R pL(r). In addition, we know by the above lemma that
∑R−1

r=1 pT (r)+∑R′

r=R pL(r) converges to 1 uniformly across all possible deviations of individual i. Since,

given our conditioning event, i has zero probability to get an object in O≤k−1, there must

exist some N2 ≥ 1 so that for all n ≥ N2, i’s expected payoff when he lies is less than∑R−1
r=1 pT (r)ûr +

∑R′

r=R pL(r)v̂r + ε
2
, where v̂r ≤ ûR for each r = R, ..., R′. In the sequel, we

fix n ≥ max{N1, N2}. Conditional on E , the expected payoff when lying is no greater than

R−1∑
r=1

pT (r)ûr +
R′∑
r=R

pL(r)v̂r +
ε

2
≤

R−1∑
r=1

pT (r)ûr +
R′∑
r=R

pL(r)ûR +
ε

2

≤
R−1∑
r=1

pT (r)ûr + pT (R)ûR +
ε

2U(1, 1)
ûR +

ε

2

≤
R−1∑
r=1

pT (r)ûr + pT (R)ûR + ε

where the first inequality uses the fact that ûR ≥ v̂r for all r = R, ..., R′. The second

inequality uses the fact that n ≥ N1 which implies
∑R′

r=R pL(r) ≤ pT (R) + ε
2U(1,1)

. The

last inequality follows from the fact that ûR ≤ U(1, 1). Since the expected payoff of the

truth is larger than
∑R

r=1 pT (r)ûr, we conclude that, conditional on E , lying cannot make

i gain more than ε whenever n ≥ max{N1, N2}. Since, as n increases, the probability of E
converges to 1 uniformly across all possible deviations of individual i, a same result holds

for unconditional expected payoffs.
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S.9 Analysis of the Extended DACB Algorithm

S.9.1 Proof of Theorem 6

The following lemma will be instrumental for the proof and is inspired from an observation

by Wilson (1972) that in the environment where preferences are uncorrelated, priorities are

arbitrary and the market is balanced, a modification of the DA algorithm can be studied as

a standard urn model.15 Using this analogy Wilson (1972) shows that the expected total

number of offers made by individuals under DA is smaller n log(n). We strengthen this

result by proving a concentration result.

Lemma S8. Consider any arbitrary objects’ priorities. In the case individuals’ preferences

are uncorrelated (i.e., where Ui(o) = ξi,o for all i,o), for any γ > 1, with probability going to

1 as n goes to infinity, the total number of offers made by individuals under DA is smaller

than γn log(n).

Proof. We start from the version of the DA mechanism as defined in McVitie and

Wilson (1971). By the principle of deferred decisions, we assume that whenever an indi-

vidual has an opportunity to make an offer, he makes his offer randomly to an object to

which he has not yet made any offer. Now, as proposed in Wilson (1972), we modify this

mechanism assuming that agents are memoryless: whenever an agents has an opportunity

to make an offer he makes this offer randomly to an object in O, including those to which

he has already made offers to. For each realization of individuals’ preferences, the outcome

is the same as with memory. Indeed, if an agent makes an offer to an object which already

rejected him, he will continue to be rejected and the final outcome remains unchanged.

The total number of offers when individuals have no memory must be larger than in the

original case where agents have memory. We let X be the total number of offers needed for

all objects in O to be matched under the mechanism where agents are memoryless. Given

that γ > 1, it is enough to show that Pr(X ≥ γn log(n)) ≤ 1
nγ−1 . For any particular object

o ∈ O, the probability that o receives no offer by time γn log(n) offers are made in McVitie

15Wilson (1972) shows that in this environment, assuming individuals are memoryless, the number of

offers needed for all objects to be matched is equivalent to the number of trials needed to collect all n

coupons in the Coupon Collector Problem (in this problem, coupons are being collected, equally likely,

within an urn of n different coupons).
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and Wilson’s algorithm16 is

(1− 1

n
)γn log(n) =

(
(1− 1

n
)n
)γ log(n)

≤ e−(γ log(n)) =
1

nγ
(S0)

where the first term is the probability that all the first γn log(n) offers have been directed

to objects other than o.

Next observe that the algorithm ends (and the assignment is complete) once every object

receives at least one offer. Hence, the probability that X ≥ γn log(n) is the probability

that the algorithm (with memorlyess agents) is not complete after n log(n) offers have been

made, which in turn equals the probability that at least one object has not received an offer

by the time n log(n) total offers have been made. By the union bound and using Equation

(S0), this latter probability is no greater n 1
nγ

= 1
nγ−1 .

In the sequel, for each size of the market n, we let j(n) and κ(n) be the two parameters

of DACB. The following result is a straightforward implication of the above lemma.

Corollary S4. Consider any arbitrary objects’ priorities. In the case individuals’ prefer-

ences are uncorrelated, if lim infn→∞
j(n)κ(n)
n log(n)

> 1 then under DA we must have

Pr {fewer than j(n) agents make more than κ(n) offers} → 1

as n→∞.

Proof. Proceed by contradiction and assume that there is δ > 0 and a sequence

nk →∞ as k →∞ such that along that sequence

Pr {more than j(nk) individuals make more than κ(nk) offers} > δ.

This implies that along the sequence {nk}, there is a probability greater than δ > 0 that

the total number of offers made under DA is greater than j(nk)κ(nk). Now, note that

since lim infn→∞
j(n)κ(n)
n log(n)

> 1, we must have that for some γ > 1 and for nk large enough,

j(nk)κ(nk) > γnk log(nk). Hence, we obtain that along the sequence {nk}, there is a

probability greater than δ > 0 that the total number of offers made under DA is strictly

greater than γnk log(nk) which yields a contradiction.

In the sequel we fix the two parameters of the DACB mechanism to be j(n) and κ(n).

Theorem 6 directly follows from the proposition below.

16At each stage of the algorithm, there is an individual who is rejected (the identity of the individual

may depend on objects’ priorities but his identity does not matter for our computations) and, using the

principle of deferred decisions and the fact that individuals are memoryless, this individual makes an offer

randomly to an object in O.
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Proposition S2. Fix any k ≥ 1. As n→∞, with probability approaching one, at the end

of Stage k of DACB, all objects in Ok are assigned and at most j(n) objects outside Ok are

assigned. In addition, for any ε > 0

|{i ∈ Îk|Ui(DACB(i)) ≥ U(uk, 1)− ε}|
|Îk|

p−→ 1

where Îk is the set of individuals matched at Stage k of DACB. Similarly,

|{o ∈ Ôk|Vo(DACB(o)) ≥ V (1)− ε}|
|Ôk|

p−→ 1

where Ôk is the set of objects matched at Stage k of DACB.

Proof of Proposition S2. We focus on Stage k = 1, as will become clear, the

other cases can be treated in a similar way.

First, consider the submarket that consists of the |O1| first agents (according to the

ordering given in the definition of DACB) and of all objects in O1 objects. If we were

to run standard DA just for this submarket, then because preferences are drawn iid, by

Lemma 2 and Corollary S4, with probability approaching 1 as n → ∞ , at the end of

(standard) DA, (a) all agents have made fewer than log2(|O1|) ≤ log2(n) offers and (b)

fewer than j(|O1|) ≤ j(n) individuals have made more than κ(|O1|) ≤ κ(n) offers.

Consider now the original market. For any δ > 0, since k(n) = o(n), we must have

that k(n) ≤ δ |O1| for any n large enough. Hence, by Lemma S1-(ii) the event that for

each agent’s max{κ(n), log2(n)} favorite objects are in O1 has probability approaching 1

as n→∞. Let us condition on this event, labeled E .

We now show that, conditional on E , with probability approaching 1 as n → ∞, all

objects in O1 and no more than j(n) objects outside O1 are assigned by the end of Stage 1.

Note that under our conditioning event E , the distribution of individuals’ preferences over

objects in O1 is the same as the unconditional one (and the same is true for the distribution

of objects’ priorities over individuals). Given event E , as long as each agent has made fewer

than log2(n) offers (which ensures that offers are only made to O1 objects) and fewer than

j(n) individuals have made more than κ(n) offers (which ensures that the end of Stage 1 is

not triggered), the |O1| first steps of DACB proceed exactly in the same way as DA in the

submarket composed of the |O1| first agents (according to the ordering used in DACB) and

of all objects in O1. Hence, as mentioned above, with probability going to 1 as n → ∞,

we then reach the end of Step |O1| of DACB before Stage 1 ends (i.e., before more than

j(n) individuals applied to their κ(n) most favorite object). Hence, conditional on E , with

probability going to 1, all objects in O1 are assigned before Stage 1 ends. In addition,
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under event E , if more than j(n) individuals make offers to objects outside O1 before Stage

1 ends, then more than j(n) individuals make more than κ(n) = o(n) offers which is not

possible by definition of a stage in DACB. Hence, under event E , Stage 1 must end before

more than j(n) objects outside O1 are assigned. Now, since Pr(E) → 1 as n → ∞, we

obtain that at the end of stage 1 of DACB, all objects in O1 are assigned and at most j(n)

objects outside O1 are assigned with probability going to 1. This completes the proof of

the first part of Proposition S2.

Now, we move to the proof of the second part of Proposition S2. We fix any ε > 0 and

γ < 1 and want to show that as n→∞,

Pr

{
|{i ∈ Î1|Ui(DACB(i)) ≥ U(u1, 1)− ε}|

|Î1|
> γ

}
−→1

and

Pr

{
|{o ∈ Ô1|Vo(DACB(o)) ≥ V (1)− ε}|

|Ô1|
> γ

}
−→1.

In the sequel, we condition on event E . Recall that, with probability going to 1, the number

of individuals matched in Stage 1 is between |O1|+1 and |O1|+j(n) and all these individuals

except possibly for j(n) of them obtain an object within their κ(n) most favorite objects.

By Lemma S1-(i) this implies that, with probability going to 1, all these individuals but

potentially j(n) = o(n) of them enjoy a payoff above U(u1, 1)− ε. As we have shown, with

probability going to 1, the first |O1| Steps of Stage 1 of DACB proceed exactly in the same

way as DA in the submarket that consists of the |O1| first agents (according to the ordering

used in DACB) and of all objects in O1. We first note that, by Lemma 2, under DA in this

submarket, with probability going to 1 the proportion of objects in O1 with a rank smaller

than 2
1−γ |O1|/ log(|O1|) is larger than γ. To see this, suppose to the contrary that with

probability bounded away from 0, as the market grows, the proportion of objects with a rank

above 2
1−γ |O1|/ log(|O1|) is more than 1−γ. Then, with probability bounded away from 0, as

the market grows: 1
|O1|
∑

o∈O1
RDA
o > 1

|O1|(1 − γ)|O1| 2
1−γ (|O1|/ log(|O1|)) = 2|O1|/ log(|O1|)

which yields a contradiction to Lemma 2. Hence, we obtain that with probability going

to 1 by the end of Step |O1| of Stage 1 of DACB, the proportion of objects in O1 with a

rank smaller than 2
1−γ |O1|/ log(|O1|) is larger than γ. Given that for any δ > 0, for n large

enough, |O1|/ log(|O1|) ≤ δ |I|, by Lemma S1-(iii), we must also have that, with probability

going to 1, the proportion of objects o in O1 with V (DACB(o)) ≥ 1− ε is above γ. Since

objects in O1 will have received even more offers at the end of Stage 1, it must still be that,

with probability going to 1, the proportion of objects in O1 for which V (DACB(o)) ≥ 1−ε
is above γ when n is large enough. We ignore the remaining objects matched in Stage 1

since there are fewer than j(n) = o(n) such objects. Thus, for k = 1, the second statement
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in Proposition S2 is proved provided that our conditioning event E holds. Since, this event

has probability going to 1 as n→∞, the result must hold even without the conditioning.

Thus, we have proved Proposition S2 for the case k = 1.

Consider next Stage k > 1. The objects remaining in Stage k have received no offers in

Stages 1, ..., k − 1 (or else the objects would have been assigned in those stages). Hence,

by the principle of deferred decisions, we can assume that the individuals’ preferences over

those objects are yet to be drawn in the beginning of Stage k. Similarly, we can assume

that priorities of those objects are also yet to be drawn. Put in another way, conditional

on Stage k − 1 being over, we can assume without loss that the distribution of preferences

and priorities is the same as the unconditional one. Thus, we can consider the market

composed of the individuals and objects not matched in previous stages. We can set O1

to be equal to the set of remaining objects in Ok, O2 to be equal to the set of remaining

objects in Ok+1, etc... (with high probability, the cardinality of each tier defined in this

way is linear in n, i.e., between |O`| − (` − 1)j(n) and |O`| for each `) so the exact same

reasoning as above completes the argument.

S.9.2 Incentives under the Extended Algorithm

In the sequel, we consider the extended version of DACB with parameters j(n) and κ(n).

We first slightly strengthen our assumption that the serial orders admit some basic uncer-

tainty from the agents’ perspective: for each sequence of sets En ⊂ {1, . . . , n} such that

lim |En|/n goes to 0 as n goes to infinity, we assume that the probability that any agent i

receives a serial order in En goes to zero as n→∞.

We show that the following result.

Theorem S4. Consider a sequence of economies satisfying lim infn→∞
j(n)κ(n)
n log(n)

> 1 and

j(n) and κ(n) are o(n). Fix any ε > 0. Under DACB, there exists N > 0 such that for all

n > N , truthtelling is an interim ε-Bayes-Nash equilibrium.

The proof is rather similar to that of Theorem 5. The two main lemmas (Lemmas S7

and S6) from the proof of Theorem 5 have to be adapted. The rest of the proof is in essence

the same and is thus omitted.

Let us fix ε > 0 and k = 1, ..., K. Assume that the ordering of DACB gives to agent i

a serial order in {|O≤k−1|+ 1 + j(n), ..., |O≤k|} with the convention that |O≤0|+ 1 + j(n) =

1. We show that there is N ≥ 1 such that for any n ≥ N , for any vector of cardinal

utilities (ûo)o∈O := (Ui(uo, ξio))o∈O, i cannot gain more than ε by deviating given that

everyone else reports truthfully. As will be clear, the argument does not depend on the

specific serial order of i within {|O≤k−1| + 1 + j(n), ..., |O≤k|} and so given that there are
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finitely many tiers, N can be taken to be uniform across all individuals with serial order in

∪Kk=1{|O≤k−1|+ 1 + j(n), ..., |O≤k|}. Hence, conditional on the event that i’s serial order is

in {|O≤k−1|+1+j(n), ..., |O≤k|} for some k = 1, ..., K, it will follow that for any n ≥ N , for

any vector of cardinal utilities, i cannot gain more than ε by deviating given that everyone

else reports truthfully. Now, given our assumption on the distribution from which the

ordering of DACB is drawn, the probability of the conditioning event goes to 1. Hence,

for any n ≥ N , for any vector of cardinal utilities (ûo)o∈O := (Ui(uo, ξio))o∈O, i cannot gain

more than ε by deviating given that everyone else reports truthfully – which shows the

desired result.

Lemma S9. Let us assume that lim infn→∞
j(n)κ(n)
n log(n)

> 1. Consider the DACB mechanism.

Fix any k = 1, . . . , K and any agent i with a serial order in {|O≤k−1|+ 1 + j(n), ..., |O≤k|}.
Assuming all agents report truthfully, the probability that i is matched at Stage k to one of

his κ most favorite choices within remaining objects at that stage converges to 1 as n→∞.

Proof. By the argument in the proof of Proposition S2, we know that with probability

approaching 1 as n goes to infinity, Step |O≤k| ends under DACB17 and, for any agent i

with a serial order in {|O≤k−1| + 1 + j(n), ..., |O≤k|}, the outcome of DACB at the end

of that step coincides with that of DA in the submarket composed only of remaining

individuals at that stage with a serial order below |O≤k| (which contains all individuals

with serial order in {|O≤k−1|+ 1 + j(n), ..., |O≤k|}) and the remaining objects in Ok. Since

the outcome of DA does not depend on the specific linear order used, under the event

that the outcome of DACB at the end of Step |O≤k| coincide with that of DA in that

submarket, if we switch the ordering (of the linear order of DACB) of agents with serial

order in {|O≤k−1| + j(n) + 1, ..., |O≤k|} the outcome of DACB at Step |O≤k| remains the

same and so the final outcome of DACB remains the same. Thus, conditional on this event,

for each agent with a serial order in {|O≤k−1|+ j(n) + 1, ..., |O≤k|}, the probability of either

not being matched by the end of Stage k or of being one of the j(n) individuals making

more than κ offers is the same. Hence, since the number of such agents goes to infinity as

n grows, this probability must go to 0 as n goes to infinity. Since the conditional event has

a probability converging to 1 as n goes to infinity, (unconditionally) this probability must

go to 0 as n goes to infinity.

In the sequel, we let Ô≥k be the set of available objects in Stage k. Note that this does

not depend on i’s reports (given that i’s serial order is in {|O≤k−1|+1+j(n), ..., |O≤k|}). We

assume that all individuals other than i report truthfully their preferences. We partition

the set of i’s possible reports into two sets T1 and T2 as follows. T1 consists of the set of

17Here, when counting the number of steps which occurred by the end of Stage k, we consider the total

number of steps from the beginning of Stage 1. Hence, we say that Step |O≤k| of Stage k ends if, from the

beginning of Stage 1, |O≤k| steps have occurred.
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i’s reports that, when restricted to objects in Ô≥k, only contain objects in Ok within the κ

first objects. T2 consists of the set of i’s reports which, when restricted to objects in Ô≥k,

contain some object outside Ok within the κ first objects.

We will again be using the following terminology: Fix a set of possible reports T . Given

an event EPi which may depend on i’s report Pi, we will say that the probability of EPi
converges to 1 uniformly across all reports in T if for any ε > 0, there is N such that for

any n ≥ N , Pr(EPi) ≥ 1− ε for any report Pi in T .

Recall that i’s serial order is in {|O≤k−1| + 1 + j(n), ..., |O≤k|}. In the sequel, given

agent i’s report, we define p(r) to be the probability of obtaining the r-th ranked object

within the Ô≥k objects (we abuse notations and forget about the dependence of p(r) on i’s

report).

Lemma S10. If i’s report is of type T1, then
∑κ

k=1 p(k) converges to 1. In addition, the

convergence is uniform across all possible reports in T1. If i’s report is of type T2, then∑`
k=1 p(k) converges to 1 where ` ≤ κ is the rank (within the Ô≥k objects) of the first object

outside Ok. In addition, the convergence is uniform across all possible reports in T2.18

Proof. Consider E the event under which, independently of i’s reported preferences,

provided that all individuals from 1 to |O≤k−1|+j(n) report truthfully their preferences, for

each k′ = 1, ..., k − 1, the objects assigned in Stage k′ contain all those in Ok′ and contain

no more than j(n) objects from O>k′ . By our argument in the proof of Proposition 1, the

probability of this event tends to 1. By construction, the convergence is uniform over all

of i’s possible reports. From now on, let us condition on the realization of event E . By

Lemma S9, we know that with (conditional) probability going to 1 as n → ∞, i makes

fewer than κ offers and is matched within Stage k. In addition, by ex ante symmetry of

objects within a given tier (given our conditioning event E , the way i ranks objects in O≤k−1
does not matter), the rate at which the conditional probability goes to 1 is the same for

each report in T1. But given that Pr(E) goes to 1 uniformly across all possible i’s reports,

the unconditional probability that i is matched within Stage k to an object within his κ

most favorite in Ô≥k also converges to 1 uniformly across these reports. This proves the

first part of the lemma.

We next move to the proof of the second part of the lemma. Let us consider the event

that for each k′ = 1, ..., K, all individuals other than i only rank objects in Ok′ within their

κ most favorite objects in Ô≥k′ (recall that with probability approaching 1 as n goes to

infinity, the size of Ô≥k′ ∩ Ok′ is linear in n). Consider as well event E as defined above

18More precisely, we mean that for any ε > 0, there is N such that for any n ≥ N ,
∑`
k=1 p(k) ≥ 1 − ε

for any ` ≤ κ and for any report of i which, restricted to objects in O≥k contains an object outside Ok at

rank ` (where the rank is within objects in O≥k).
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and let F be the intersection of these two events. By Lemma S1-(ii) as well as Proposition

1, we know that Pr(F) goes to 1 as n goes to infinity. By construction, the convergence

is uniform over all of i’s possible reports. Note that under event F no individual other

than i will make an offer to an object outside Ok within Stage k. In addition, under F , the

probability that i is matched in Stage k and obtains an object with his κ most favorite with

remaining objects goes to 1 as n goes to infinity uniformly across any report of i in T2.19
Combining these observations, it must be the case that the probability that “i is matched to

the object outside Ok with rank ` or to a better object” converges to 1 uniformly across all

possible i’ reports in T2. In addition, we know that under F , agent i can only be matched

to an object in Ô≥k, hence,
∑`

k=1 p(k) converges to 1 uniformly across i’s possible reports.

Given that Pr(F) goes to 1 uniformly across all possible i’s reports, this statement holds

for unconditional probabilities as well, as was to be shown.

S.10 Proof of Theorem 7

Recall that in the two tier environment under consideration (i.e., K = 2), given x ∈ (0, 1),

we denote σx for the symmetric profile of strategies where each agent of each type lists first

his xκ(n) most favorite objects in O1 and then his (1− x)κ(n) most favorite objects in O2.

For each integer n, define x(n) := 1−
√

log2(x2n)/κ(n). Observe that, since we assumed

that κ(n)/ log2(n) → ∞ as n → ∞, x(n) converges to 1 as n grows large. We show that

the sequence of symmetric strategies {σx(n)}n satisfies the following two properties. (1) For

any ε > 0, and any n large enough, σx(n) is an ex-ante ε-Bayes Nash equilibrium; (2) the

induced matching outcome is asymptotically efficient and asymptotically stable.

For the proof, we first establish the following claim:

Claim: Given the sequence of profiles of strategies {σx(n)}n, the probability that all agents

19 Indeed, the probability that i gets matched in Stage k to one of his κ most favorite object in Ô≥k
under a report in T2 is larger than the probability that i gets matched in Stage k to one of his κ most

favorite object in Ô≥k under the report where within the κ first objects in Ô≥k, any object outside Ok
is replaced by an object in Ok. To see this, let ` be the rank (within Ô≥k) of the first object outside Ok
under the original report. Observe that under F , i cannot get matched to an object in a tier k′ < k.

In addition, if under the modified report, i gets matched to an object with a rank (within Ô≥k) strictly

smaller than ` then, by definition of DACB, i will obtain the same match under the original report. Now,

if i gets matched to an object with a rank (within Ô≥k) in {`, . . . , κ} then, under the original report, i

applies to an object in O>k and so, under F , by definition of DACB, i gets matched to that object. Since

the modified report is in T1, and, as we already showed, the probability that i is matched in Stage k to

one of his κ most favorite object in Ô≥k goes to 1 as n goes to infinity uniformly across any report of i in

T1, this completes our argument.
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are matched goes to 1 as n goes to infinity.

Proof. Given an n-economy, recall that under the profile of strategies σx(n), the

assignment of DA (with truncation κ(n)) can be obtained in two steps. In the first step,

we run DA with only first tier objects and the agents ranking only x(n)κ(n) objects. To

complete the matching, in the second step, we run DA with only second tier objects and

all unmatched individuals ranking only (1 − x(n))κ(n) objects.20 Now, in Step 1, there

are more individuals than objects and ordinal preferences are drawn iid uniformly. We will

show that with probability going to 1 in this unbalanced market all objects are matched.

Pick randomly x1n individuals. We obtain a new market composed of these x1n individuals

together with the x1n objects in O1. In this balanced market, the number of offers received

by each object is weakly smaller than in the market with all n individuals and the x1n

objects in O1. Thus, it is enough for our purpose to show that, with probability going to

1, in this balanced market all objects are matched. In order to show this, consider DA

without any constraint on offers. We know, by Pittel (1992), that in this balanced market,

with probability going to 1 as n goes to infinity, all objects in O1 are matched before agents

make more than log2(x1n) offers. In Step 1, our mechanism is DAC with the length of ROL

at x(n)κ(n). Because κ(n)/ log2(n) → ∞ as n → ∞ and x(n) goes to 1 as n → ∞, there

is N > 0 such that x(n)κ(n) ≥ log2(x1n) for any n > N (recall that x does not depend on

n). Combining the two previous observations, it follows that, in the balanced market, with

probability going to 1 as n goes to infinity, all objects in O1 are matched, as claimed.

Now, in Step 2 we have all remaining individuals and all objects in O2. Since we only

have objects in O1 in Step 1, the number of individuals who remain unmatched at the end

of Step 1 must be (weakly) greater than |O| − |O1| = |O2|. Hence, Step 2 is a (weakly)

unbalanced market where there are more individuals than objects and where the length

of each agent’s ROL is (1− x(n))κ(n). In addition, by the principle of deferred decisions,

we can simply assume that preferences/priorities are yet to be drawn. Finally, we observe

that (1 − x(n))κ(n)/ log2(x2n) =
√
κ(n)/ log2(x2n) goes to ∞ as n grows large. So for n

large enough, (1− x(n))κ(n) is greater than log2(x2n). Thus, we can mimic the reasoning

we just made for Step 1 to show that with probability going to 1 as n grows, all objects in

O2 are matched.

By combining the two above results (for Step 1 and 2), we conclude that the probability

that all objects (and so that all agents) are matched goes to 1 as n goes to infinity, as

claimed.

Because agents are symmetric, by the previous result, for each individual, the probability

20There may exist O1 objects which are not assigned by the end of the first step. We do not have to

consider them in the second step because they would in any case receive no offer in that stage (since all

agents remaining in the second step have exhausted all their offers to objects in O1).
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of being matched an O1 object and that of being matched an O2 object converges to x1
and x2 respectively. We state this in the following corollary.

Corollary S5. Given the sequence of profiles of strategies {σx(n)}n, for each k = 1, 2, the

probability that an agent is matched to an object in Ok goes to xk as n goes to infinity.

The above corollary can be used to prove that the strategy profiles in the sequence have

a desirable incentive property.

Proposition S3. For any ε > 0, for any n large enough, σx(n) is an ex-ante ε-Bayes Nash

equilibrium in the n-economy.

Proof. Fix any ε > 0. Without loss of generality, assume that ε > 0 is small enough so

that U(u1, 1)− ε > U(u2, 1). We claim that for n large enough σx(n) is an ex-ante ε-Bayes

Nash equilibrium. Let n be large enough so that (1− x(n))U(u1, 1) ≤ ε.

Let Ei be the event that agent i realizes utility of at least U(uk, 1) − ε from each of

her κ(n) most favorite objects in Ok for k = 1, 2. This last condition ensures that under

event Ei, individual i prefers each object in O1 that he ranks to any object in O2 (since

U(u1, 1)− ε > U(u2, 1)). Because κ(n) = o(n), by Lemma S1, the probability of Ei goes to

1 as n increases. Thus, the expected payoffs conditional on Ei of agent i converge to the

(unconditional) ex-ante payoffs.

Note that, by symmetry, the probability of getting matched an O1 object for individual

i does not depend on ξ.21 Hence, it must be the same as the ex-ante probability of being

matched to an O1 object which, by Corollary S5, converges to x1 under the profile of

strategies σx(n). Similarly, the probability that ξ gets matched to an O2 object converges

to x2 and the probability that he gets unmatched converges to 0. Fix n large enough so

that the probability of being unmatched given an arbitrary type ξ is bounded from above

by ε/U(u2, 1).

In the sequel, we fix an agent and consider a deviation from the strategy prescribed

by σx(n). We fix a realization of type ξ ∈ Ei and assume without loss of generality that,

under the deviating strategy, ξ lists first his z(n) most favorite objects in O1 and then his

κ(n)− z(n) most favorite objects in O2.
22 There are two cases to consider.

Case 1. z(n) ≤ x(n)κ(n). One of the following events must be true.

1a. Under the profile of strategies σx(n), ξ gets matched to an O1 object within his z(n)

most favorite objects. Here, the deviation has no impact on ξ’s assignment.

21Agents with types ξ and ξ′ rank the same number of objects in O1 and the same number of objects

in O2. In addition, objects within each tier are ex-ante symmetric.
22This follows from the ex ante symmetry of the objects within each tier and the use of symmetric

strategies adopted by the opponents. Listing objects within a tier untruthfully or dropping a more preferred

object within a tier can only do worse.
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1b. Under the profile of strategies σx(n), ξ gets matched to an O1 object between his

z(n) + 1 and xκ(n) most favorite objects. Here, the deviation entails a payoff loss strictly

greater than U(u1, 1) − ε − U(u2, 1) > 0 (recall that each object in O1 listed under the

profile of strategies σx all yields payoff of least U(u1, 1)− ε > U(u2, 1)).

1c. Under the profile of strategies σx, ξ gets matched to an O2 object. Under the

deviating strategy, ξ cannot be assigned an object in O1. While the exact impact of the

deviating strategy on the size of the set of participants in Step 2 is not easy to analyze, the

gain (if any) from the deviating strategy is bounded by U(u2, 1)− (U(u2, 1)− ε) = ε since

ξ ∈ Ei.
1d. Under the profile of strategies σx(n), ξ gets unmatched. Under the deviating strategy,

ξ cannot be assigned an object in O1. The gain of the deviating strategy is at most U(u2, 1).

Hence, the expected gain of the deviating strategy is bounded from above by Pr{1c}ε+

Pr{1d}U(u2, 1). By construction, Pr{1d}U(u2, 1) ≤ ε and so the expected gain of the

deviating strategy is at most 2ε.

Case 2. z(n) ≥ x(n)κ(n). One of the following events must occur.

2a. Under the deviating strategy, ξ gets matched to an O1 object within his x(n)κ(n)

most favorite objects. Here, the deviation has no impact on ξ’s assignment.

2b. Under the deviating strategy, ξ gets matched to an O1 object between his x(n)κ(n)+

1 and z(n) most favorite objects. Here, the deviation yields a payoff gain of at most

U(u1, 1) > 0 (the worst case scenario being that ξ gets unassigned under σx(n)).

2c. Under the deviating strategy, ξ gets matched to an O2 object while under the

strategy associated with σx(n), ξ gets assigned an object in O2 (he cannot be assigned an

object in O1). The gain (if any) obtained using the deviating strategy is at most U(u2, 1)−
(U(u2, 1)− ε) = ε since ξ ∈ Ei.

2d. Under the deviating strategy, ξ gets matched to an O2 object while under σx(n), ξ

gets unassigned. The gain obtained using the deviating strategy is at most U(u2, 1).

2e. Under the deviating strategy, ξ gets unmatched. Trivially, there can be no gain

from using the deviation.

Hence, the expected gain of the deviating strategy is bounded from above by Pr{2b}U(u1, 1)+

Pr{2c}ε+ Pr{2d}U(u2, 1). By construction, Pr{2d}U(u2, 1) ≤ ε. In addition, we show be-

low that Pr{2b}U(u1, 1) ≤ ε which implies that the expected gain of the deviating strategy

is bounded from above by 3ε.

Thus, it remains to show that Pr{2b}U(u1, 1) ≤ ε. Recall that {2b} is defined as the

event where, under the deviating strategy, ξ gets matched to an O1 object between his

x(n)κ(n) + 1 and z(n) most favorite objects. Recall the basic property that if o and o′ are

in O1 and o is listed ahead of o′ in i’s list then the probability of getting assigned object
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o is higher than that of being assigned o′. Hence, the probability that under the deviating

strategy, ξ is assigned an object between his x(n)κ(n) + 1 and z(n) most favorite objects

is bounded from above by 1 − x(n).23 Thus, Pr{2b} ≤ 1 − x(n). Our assumption that

(1− x(n))U(u1, 1) ≤ ε completes the argument.

To recap, there is n large enough so that, given any realization ξ ∈ Ei, the expected

gain from deviating is at most 3ε. Since this is true for any ξ ∈ Ei, the expected gains

from deviating conditional on Ei must be bounded by 3ε. Since payoffs are bounded and

Pr(Ei) goes to 1 as n grows, we are done.

Proof of Theorem 7. Fix any ε > 0 and let n be large enough so that σx(n) is an

ex ante ε-equilibrium (this is well-defined by Proposition S3). We claim that the resulting

outcome is asymptotically efficient and asymptotically stable.

Asymptotic efficiency. We know by Claim 1 that the probability that all agents are

matched goes to 1 as n goes to infinity. In addition, for any δ > 0, as we showed in Lemma

S1, the probability that all agents list only objects with which they enjoy idiosyncratic

payoffs greater than 1− δ goes to 1 as grows. Taken together, these two statements imply

that, for any δ > 0, with probability going to 1 as n grows, all agents get matched to

object with which they enjoy idiosyncratic payoffs greater than 1− δ. Hence, the outcome

is asymptotically efficient.

Asymptotic stability. To show the asymptotic stability of the induced outcome, we

come back to the proof of the last claim. Recall that the outcome of DA (with truncation

κ(n)) was obtained in two steps. In Step 1, the submarket is composed of all n individuals

and only objects in the first tier O1. We are in an environment where there are more

individuals than objects. Let us pick x1n individuals randomly and consider the balanced

market composed of these x1n individuals and the x1n objects in the first tier O1. Clearly,

under our mechanism, each object is weakly worse-off in this new market. If we run

standard DA in this market, we know from Pittel (1992) that with probability going to 1, the

algorithm will end before agents make more than log2(x1n) offers. In Step 1, our mechanism

is DA with truncation x(n)κ(n). Because κ(n)/ log2(n) → ∞ as n → ∞ and x(n) goes

23To see this, let us denote by p` the probability of being matched an object listed in the `th position

for ` = 1, ..., z(n). We claim that
z(n)∑

`=x(n)κ(n)+1

p` ≤ 1−x(n). Suppose to the contrary that
z(n)∑

`=x(n)κ(n)+1

p` >

1 − x(n). Then because {p`} is a decreasing sequence, we would have px(n)κ(n)+1 >
1−x(n)

z(n)−xκ(n) . Again

because {p`} is a decreasing sequence, we obtain that
x(n)κ(n)∑̀

=1

p` > x(n) 1−x(n)
z(n)/κ(n)−x(n) where the term

1−x(n)
z(n)/κ(n)−x(n) is greater than 1 because z(n)/κ(n) ≤ 1. Thus,

x(n)κ(n)∑̀
=1

p` > x(n) and so eventually we get

z(n)∑̀
=1

p` > x(n) + 1− x(n) = 1, a contradiction.
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to 1 as n grows large, there exists N > 0 such that x(n)κ(n) ≥ log2(n) for any n > N .

Combining the two previous observations, in the balanced submarket, with probability

going to 1 as n goes to infinity, the matching given by DA and the matching given by

DA with truncation x(n)κ(n) are the same. By Lemma 3, in the balanced submarket, for

any δ > 0, the proportion of objects in O1 receiving a (idiosyncratic) payoff greater than

1 − δ converges in probability to 1. Thus, in the whole market where there are (weakly)

more individuals than objects this must remain true. Now, to treat objects in O2, we

must consider the second step. Again, there are (weakly) more individuals than objects

and where preferences/priorities over O2 objects (i.e. remaining ones) are yet to be drawn.

In addition, as we already claimed, (1− x(n))κ(n)/ log2(x2n) =
√
κ(n)/ log2(x2n) goes to

∞ as n grows large, and so, for n large enough, (1 − x(n))κ(n) is greater than log2(x2n).

Hence, the same argument as for O1 objects can be applied to O2 objects To recap, for any

δ > 0, the proportion of objects in O receiving a (idiosyncratic) payoff greater than 1− δ
converges in probability to 1. This completes the proof of the asymptotic stability of the

induced outcome.

S.11 Simulations Based on Randomly Generated Data

This section is organized in three parts. We start by providing simulations showing that

our limit results hold more generally even for moderate size markets. We next show that

the the results are robust to more general forms of preferences and priorities. Importantly,

we explain how DACB has to be modified in this richer environment by defining properly

the serial orders given to agents.

Finally, for fixed market sizes, we study how DACB(κ, j) performs (for different values

(κ, j)) and show how its performance evolves when we vary correlation in agents’ prefer-

ences. We see the large compromise between efficiency and stability that can be attained by

DACB when (κ, j) vary. By doing so, we will clearly see how a small departure from exact

stability (resp., efficiency) can allow for a significant increase in efficiency (resp., stability)

performance. Finally, we will see how this trade-off evolves when correlation increases.

Overall, we observe that the relative performance of DACB increases when correlation

increases.

S.11.1 Robustness to market sizes

Figure 1 shows the utilitarian welfare—more precisely the average idiosyncratic utility

enjoyed by the agents—achieved by alternative algorithms, including DACB with κ(n) =

log2(n), under the assumption that U(uo, ξi,o) = uo + ξi,o and V (ηi,o) = ηi,o, and that each
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of uo, ξi,o and ηi,o are distributed uniformly from [0, 1]. Importantly, the welfare is measured

under the varying market size ranging from n = 10 to 10, 000.24 As expected, the TTC
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Figure 1: Utilitarian welfare under alternative mechanisms

achieves higher utilitarian welfare, followed by DACB, and DA, and they all increase with

the market size. But the levels of the utilitarian welfare as well as the rates at which the

welfare increases with the market size differ across different mechanisms in a significant

way. The efficiency of DACB rises quickly with market size, reaching 90% for n = 1, 000,

and above 96% for n = 10, 000. By contrast, the efficiency ratio is fairly steady around

80-81% for DA, regardless of the size. As n rises in the range 1, 000 ≤ n ≤ 10, 000, the

DACB’s gap relative to TTC narrows to 3%, while its gap relative to DA widens to 15%.

24The mechanisms were simulated under varying number of random drawings of the idiosyn-

cratic and common utilities: 1000, 1000, 500, 500, 200, 200, 100, 100, 20, 10 for the market sizes n =

10, 20, 50, 100, 200, 500, 1, 000, 2, 000, 5, 000, 10, 000.
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This result shows that DACB performs well in efficiency even for relatively small markets.

Figure 2 shows the fraction of blocking pairs under DA, DACB and TTC. Clearly, DA
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Figure 2: The fraction of blocking pairs under alternative mechanisms.

admits no blocking pairs, so the fraction is always zero. Between TTC and DACB, there

is a substantial difference. Blocking pairs admitted by TTC comprise almost 9% of all

possible pairs, whereas DACB admits blocking pairs that are less than 1% of all possible

pairs, and these proportions do not vary much with the market size. These simulation

results suggest that the DACB performs reasonably well even for moderate-size markets.
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S.11.2 Robustness to general forms of preferences and priori-

ties

Lee and Yariv (2017) show that any stable matching (and thus DA) is asymptotically

efficient if agents’ priorities have common component that is drawn from a non-degenerate

interval according to an absolutely continuous distribution function and if the market is

balanced (i.e., that the numbers of individuals and objects are the same). To see how

DACB compares with DA under this environment, we performed several simulations under

the assumption that agent i’s priority at object o is given by V (vi, ηi,o) = vi+ηi,o, where both

vi and ηi,o are each uniformly distributed from [0, 1]. We assume that agent’s preference

is given by U(uo, ξi,o) = uo + ξi,o where ξi,o is distributed uniformly from [0, 1], and uo is

uniform on [0, 1] or [0, 3]. When we run DACB in this environment, we set the serial orders

of the agents according to their average priorities, i.e., the agent with the best average

priority gets the first position in the serial order, the one with the second average priority

gets the second, and so on. Hence, the name priority-based (PB) DACB. As discussed in

Sections 5 and 6, this is how we envision DACB to be implemented in a pratical setting,

namely with the serial order chosen to reflect the agents’ priorities at objects. Finally, for

the purpose of this simulation, we also set κ(n) = log2(n) throughout.

Figure 3-(a) compares utilitarian welfare under DA, DACB and TTC when uo is uniform

on [0, 1]. As can be seen, the TTC performs best, followed by DACB, which performs in

turn better than DA. While both DA and DACB attain higher welfare as the size of the

market increases, the difference between the two is significant for a reasonable market size.

Figure 3-(b) shows the same comparison when uo is uniform on [0, 3]. This change simply

means that agents’ preferences exhibit higher correlation than before. Hence, as discussed

in the text, this case implicitly involves market imbalance and excessive competition toward

high quality objects. In light of our result in Section 4.2 and Ashlagi, Kanoria, and Leshno

(2017), one would expect the gap between DACB and DA to widen in this case. This is

indeed what we see here.

Last, Figures 4 compares the number of blocking pairs under alternative mechanisms

in this environment. Compared with the case without correlation in agents’ priorities (see

Figure 2 in the main text), the fraction of blocking pairs under TTC is significantly lower

(close to 3-6% as opposed to 10% in Figure 2 in the main text). The reason for this is that

the agents assigned in early rounds of TTC tend to have high priorities even when they

are assigned via long cycles, unlike the case of uncorrelated priorities. Nevertheless, the

fraction of blocking pairs does not fall as the market grows large. This fact suggests that

the asymptotic instability we find in Section 4.1 is robust to the introduction of correlated

priorities. By contrast, the PB DACB eliminates almost all blocking pairs; the fraction of

blocking pairs hovers around 1%.
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Figure 3: Utilitarian welfare under correlated priorities.

S.11.3 The effect of preference correlation on mechanisms

Our results (Theorems 2 and 3) suggest that—under fairly general conditions—increased

correlation in agents’ preferences worsens the inefficiency of DA and the instability of

TTC. However, Theorems 4 and 6 show that, asymptotically, DACB with appropriately

chosen (κ, j) is efficient and stable. This last result remains true even when competition

among agents is strong (for instance, with large common value differences across objects

in different tiers). Our analytical results are, however, silent on how correlation affects the

performance of DACB (for a fixed size of the economy). The simulations performed below

show that, when competition increases due to preference correlation, the performance of

DACB declines in absolute terms but its performance improves in relative terms compared

with those of DA and TTC. Importantly, the simulations show how the choice of (κ, j)

varies when correlation varies.

The simulations performed in this section use the very same setting as in Section S.11.1:

U(uo, ξi,o) = uo + ξi,o and V (ηi,o) = ηi,o, where uo, ξi,o and ηi,o are distributed uniformly

from [0, 1]. To increase correlation, we simply increase the size of the support of the

distribution of uo to [0, 3]. The size of the market is fixed at n = 5, 000. Figure 5 depicts

the “levels” of efficiency and stability achieved via DACB with various (κ, j)’s. Efficiency

(the vertical axis) is measured by the percentage of agents who cannot be made better off
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Figure 4: Number of blocking pairs under correlated priorities.

through Pareto-improving reallocation, while stability (the horizontal axis) is measured by

the percentage of pairs (i, o) that do not form a block.25 For both levels of correlation in

agents’ preferences (i.e., distribution of uo) we plot the efficiency / stability performance

of DACB for various values of (κ, j). We refer to the induced “frontier” as the efficiency /

stability frontier.

We first note that allowing for a minor violation of stability (resp., efficiency) can

significantly improve the efficiency (resp. stability) performance of our mechanism for both

levels of correlation. For instance, for both distributions of uo, tolerating 2% of blocking

pairs allows one to reduce the efficiency loss by 15 to 20 percentage points compared to the

situation where exact stability is imposed. Second, we observe that the efficiency / stability

frontier is pushed inward after an increase in correlation among agents’ preferences. More

precisely, given any level of stability, the maximum level of efficiency one can achieve (on the

frontier) decreases. This means that, for a fixed value of (κ, j), the absolute performance of

DACB declines both in the efficiency and stability after an increase in correlation. However,

25Specifically, efficiency is defined as 1 − # of Pareto-improvable agents
# of total agents

where the # of Pareto-

improvable agents corresponds to the number of agents who are better off when running Shapley-Scarf

TTC on top of the mechanism. As for stability, our percentage is defined by 1− # of blocking pairs
# of possible pairs

where

we recall that the denominator is n(n− 1) for n = 5, 000.
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Figure 5: Efficiency vs. Stability.

Note: The shape of each coordinate corresponds to κ, while the associated integer refers to parameter j.
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the relative performance of DACB over thoses of DA and TTC improves: after the increase

in competition, the efficiency loss for DA is huge (almost 20 additional points) and the

stability loss for TTC is also important (close to 10 additional points). For appropriate

choices of (κ, j), the losses in the two dimensions for DACB can be limited to 3-4 points.

The simulation results also give us some guidance on how the choice of (κ, j) should

change when competition increases. Again, increased correlation in agents’ preferences

reduces the performance of DACB in both efficiency and stability. However, the adverse

effect on efficiency appears to become more severe than that on stability. For instance,

focusing on the extreme points (DA and TTC), the efficiency measure is reduced by almost

20 points under DA while the stability loss is roughly of 8 points for TTC.26 Hence, assuming

that the designer has some fixed preference over the efficiency and stability trade-off, after

an increase in correlation, the designer will find the outcome from the same (κ, j) to entail

too much inefficiency compared with stability. Thus, such a designer will want to reduce

the value of κ and/or j to restore what he considers to be the “optimal” values of efficiency

and stability.

S.12 NYC Public High School Choice and the As-

sociated Data Set

S.12.1 Institutional elements on how NYC actual system op-

erates

School choice has a long history in New York City. For instance, selective high schools

appeared in the early 20th schools. The current system established by the Bloomberg

administration started in 2004 and is the most highly centralized that the city has ever

known.27 In this section, we only provide a brief description of the procedure and refer

to Corcoran and Levin (2011) or Abdulkadiroglu, Pathak, and Roth (2009) for further

descriptions. Each fall, about 90,000 students apply to enter a high school in New-York

City in the following year. Most of them are 8th graders.28 NYC has over 700 school

26Strictly speaking, TTC is not a particular case of DACB. However, serial dictatorship is a special case

of DACB and gives almost the same outcome in terms of efficiency and stability as TTC in our simulations.
27It replaced a system where students could submit at most five choices outside of their zone or attend

their zoned schools if any. Under this old system, schools offers were uncoordinated so that some students

received multiple offers while a large fraction of students received no offers. After the main round of

assignment more than a third of students were left with no assignment and ultimately got administratively

assigned. See Abdulkadiroglu, Agarwal, and Pathak (2015).
28A small fraction of the students are 9th graders. Those are mainly coming from junior high schools

including 9th grade.
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programs.29 There are seven types of “admission methods” which determine how a program

orders students by priorities. As we will see, these priorities are often weak, causing a set of

students to fall in the same priority class. In order to resolve these indeterminacies, a single

tie-breaking rule is used: at the beginning of the process, a single random number is assigned

to each student. Whenever necessary this number is used to break an indeterminacy in the

priorities of a program. We now describe these seven admission methods.

Unscreened programs do not rank students at all, i.e., all students are in the same pri-

ority class. Zoned school programs give priority to students who live within a pre-defined

zone area (some students can have no zoned program). For these two programs, there is

no screening of students other than by lottery and geographic location. However, the other

five programs, to some extent, evaluate students’ abilities in some way or condition their

priorities on interests applicants express in attending a school. For instance, for limited

unscreened programs, all else being equal, students who attended an information session

or visit the school’s exhibit at high school fairs or open houses will have a higher prior-

ity. Similarly, Screened programs (all else equal) assign higher priority to students based

on several criteria such as their 7th grade report card, reading and math standardized

scores, attendance and punctuality, interview, essay or additional diagnostic tests. Audi-

tion programs partly base their priorities on auditions aimed at evaluating their proficiency

in specific performing of visual arts, music, or dance. Educational option programs tar-

get a distribution in terms of reading ability measured by their score on the 7th grade

standardized reading test. If possible, 16% of seats are assigned high performing, 68%

middle performing students and the 16% remaining are assigned low performing students.

Moreover, for half of their seats, educational option programs can actively rank students

(while still respecting the target distribution) as screened schools do. For the other half,

the random tie-breaking rule is used subject to the distributional constraint.30 In addition,

the system ensures admission to an educational option program for students within the top

29One special feature of NYC is that one school can offer several school programs. Indeed, there are

about 400 high schools housing these programs. Students apply to programs, and the programs within the

same high school can be very distinct. Hence, for our purpose, the relevant unit to focus on is the program.
30 More precisely, each educational option program is split into six separate programs: LR, LS, MR,

MS, HR, HS where L, M and H stand for low, middle or high achievement (in the reading test) while R

and S stand for random and select. For a given educational option program, 50%×16% of the seats are for

LR, 50%×68% are for MR and 50%×16% HR. Similarly, 50%×16% of the seats are for LS, 50%×68% are

for MS and 50%×16% HS. For these “virtual subprograms”, high-level students are ranked above middle-

and low-level students at HS/HR, middle-level students are ranked above high- and low-level students at

MS/MR, and low-level students are ranked above high- and middle-level students at LS/LR. Within each

class the selection process depends on whether the virtual subprogram is select (S) or random (R). For

select subprograms, the selection within a category is similar to that of a screened programs. For random

subprograms, the single random number is used to break ties.
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2 percent on the seventh grade standardized reading test provided that this program is top

ranked. Finally, specialized high school programs have a special status. Students willing to

apply to these schools have to pass the Specialized High School Admission Test (SHSAT).

Students’ priorities in these schools are purely determined by their SHSAT score.31

In the summer following seventh grade, families are encouraged to review the Direc-

tory of the NYC Public High Schools published by the Department of Education. This

document provides information on schools’ locations, contact information, enrollment, aca-

demic performances along with details on how priorities are set. In the fall, students who

are interested in entering a specialized high school program have to pass the SHSAT test.

Programs requiring auditions and interviews conduct them during the fall semester as well.

Early December, these students participate in the first round. In that round, all students

have to submit a list of up to twelve school programs by order of preferences. Students

who passed the SHSAT test are allowed to submit an additional list of specialized school

programs ordered by preferences.32 The DA (student proposing) mechanism is used to

produce the assignment for both specialized high schools and regular high school programs,

separately.33 In March, students receiving an offer from a specialized program (hence, who

passed the SHSAT test) are informed of that offer together with the additional offer (if

any) they may have received from a non-specialized program. They are asked to pick one

of the two offers.

Students who did not get any offer in round 1 or did not participate in round 1 go

through a second round (sometimes referred to as the main round).34 Capacities of schools

are adjusted based on the decisions made by the students assigned in the first round. The

same algorithm is used to assign students, using the ROLs these students had submitted

early on. The vast majority of students is assigned in that round. However, if a student is

unassigned, there is a third round in April where this student can again submit a new set

of up to twelve choices among remaining school programs. In this third round DA is again

used to assign students. In case a student is still unmatched he will be assigned a school

as close as possible to his residence. In addition, if there are sufficient grounds, a student

may appeal in May. Finally, students who were not present for this high school admission

process have to meet with an admissions counselor at the enrollment office in order to get

31Only a small fraction of seats at these schools are opened to disadvantaged students who performed

well at the SHSAT but who were below the cut-off score for acceptance.
32There are nine specialized high school programs in NYC.
33To handle the target distribution of Educational Option programs (see footnote 30), the rank order

list of a student who applies to such a program is modified to rank the six “virtual” subprograms according

to the order HR, HS, MR, MS, LR, LS.
34See http://schools.nyc.gov/ChoicesEnrollment/High/events/default.htm for details on the

second round application process.
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assigned a high school. This last round is usually referred to as over-the-counter.35

S.12.2 Data sets

The NYC Department of Education (DOE) provided us with several data sets. We used

data for academic year 2009-2010 which for each round (round 1, 2 and 3), contains the

ROLs of the students who participated in that round as well as the assignments achieved

at the end of that round. In addition to this, for each school program that a student

ranks, the data contains information on the priority of the student at that school. Thus,

we can reconstruct each school program’s priorities (at least over students who ranked that

program) – see next section for additional details.

Removal of data points. We removed from our data set the small number of students

for whom we had missing information such as ZIP code or information on the average

income in their ZIP codes. Students with ethnicities different of Black, Hispanic, Asian or

White were also removed.36 We deleted programs for which we had missing information,

in particular, those which do not appear in the NYC high school directories that we use to

reconstruct priorities (see below). We also removed all programs which closed by the end of

the year (students’s behavior suggests that they were aware that these school programs were

about to close). In addition, as pointed out by Abdulkadiroglu, Pathak, and Roth (2009),

the system does not give incentives to students who scored within the top 2 percent on the

seventh grade standardized reading test to report truthfully their preferences. Hence, we

removed these students.

Data for preference estimation. For the estimation of preferences, we used students

participating in Round 1 and 2 (there is no additional student participating in Round

3).37 Eventually, we had 70,559 students and 694 school programs available for preference

estimation.

Data for Comparison of Mechanisms. To run our mechanisms, we restricted atten-

tion to students being matched to a program either in Round 2 or in Round 3. We also

deleted from the student’s ROL the program if the student is not eligible.38 Finally, the

35The number of such students is surprisingly large (around 36,000 every year). These are among the

school system’s highest-needs students. See Arvidsson, Fruchter, and Mokhtar (2013).
36Ie., students with Multi-Racial/Mixed Ethnicity as well as American Indian or Alaskan Natives.
37Recall that students participating in Round 1 submit a list on non-exam schools.
38A student is not eligible at a school if he/she does not meet at least one of the admission priorities

listed in the NYC high school directory for that school (i.e., if he has no priority group) or if the school
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information about each program’s capacity is not available. In order to estimate the ca-

pacities of a school, we used the enrollments through Rounds 2 and 3 at that school. Since

we only kept those students who are matched to a school either at Round 2 or Round 3, by

construction, the number of students involved is exactly equal to the total number of seats

at schools.39 We eventually ended up having 66,392 students and 694 programs as inputs

for our algorithms.

S.12.3 Strategies to complete missing data

Priorities. For each school program that a student ranks, the student is assigned a

priority group and a priority rank. These two numbers are meant to allow us to reconstruct

each school program’s priorities. Priority group specifies coarse equivalent classes. Students

with small priority groups numbers always have higher priority than students with larger

ones. Within each coarse priority class so defined, whenever available, the priority rank

number is used to further discriminate between students’ priorities. This lexicographic order

between priority group and priority rank is (based on the explanation by Department of

Education staff) the alleged procedure.40

As mentioned in the paper, an applicant’s priority is observed in the current data

set only for the programs the applicant lists in his/her ROL. For our purposes, we need

to reconstruct these priorities for programs that an applicant does not list. There are

two reasons why we need to reconstruct the missing priority information. First, when

we compare mechanisms based on observed ROLs (Section 6.1 in the paper), the missing

priority information for programs not listed in ROL presents some issues with calibrating

TTC. Indeed, under standard TTC, a student may be able to trade a seat of a school at

which he has a high priority – even though he may not list that school – with a seat at

did not assign him any priority rank.
39Abdulkadiroglu, Pathak, and Roth (2009) use the final fall enrollments as estimates of capacities.

However, these figures include a sizable number of students who are admitted through the over-the-counter

round. Evidently, the seats for these applicants are created during this administrative assignment process

and they are not available during Round 2 assignment; many programs who reject some applicants in

Round 2 end up admitting students in administrative assignment. Given this, the fall enrollments would

over-estimate the capacities used for the Round 2 assignment. We believe that the qualitative nature of

the comparison of alternative matching algorithms performed here and also in Abdulkadiroglu, Pathak,

and Roth (2009) is robust to alternative methods of estimating capacities.
40We do note, however, that there are incidences of these lexicographic rule being violated. The inci-

dences comprise a rather small fraction. For instance, there are 2645 students who see their priority group

number violated, i.e. who are rejected from a school program while others with higher priority group

number are accepted; and 4051 students who see their priority group number violated or are rejected from

a school program while others with a same priority group number and a higher priority rank are accepted.

In any case, the priority rule serves our purpose, which is to consider a realistic market setting.
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a school that he likes (but where his priority may be low).41 Second, when we compare

mechanisms based on structural estimates (Section 6.2 in the paper), the completed ROLs

contain schools which are not in the observed ROLs. However, to run our mechanisms, we

do need to get the priorities of students at these schools.

To reconstruct the missing priorities we proceed as follows. First, the rules used at

a school to assign priority groups to students are publicly available (in NYC public high

school directories). These rules are function of students’ characteristics that we observe

in our data and so we can reconstruct priority groups of students at schools which do not

appear in the observed ROL.42

As we already explained, priority rank obeys rules that are not fully explicit. So to

reconstruct priority ranks, we proceeded in two steps. First, for a school program giving

priority ranks to students (audition, educational option, and screen programs) we estimate

the probability that a student gets a rank. Indeed, some students do not get any priority

rank meaning that these students are unacceptable at the school. In order to estimate

this probability, we focus on the students who listed the program, and we run a logistic

stepwise regression (combining backward elimination and forward selection of explanatory

variables).43 In a second step, we estimate the distribution over priority ranks of a student

given that he does receive a priority rank. More specifically, focusing on the students who

got a priority rank at the program, we run a linear stepwise regression (again, combining

backward elimination and forward selection within the same explanatory variables) in order

to estimate the priority rank of students.

Eventually, for each program (audition, educational option, or screened) and for each

student who did not list that program in his/her observed ROL, we obtain (1) the proba-

bility that this student gets a rank at that program and (2) the probability distribution of

getting alternative ranks conditional on getting a priority rank.

Geographic distance. Recall that we do not have the street addresses for students but

only the ZIP code of their residence. We used google maps API (and library ggmap in R)

to geocode the addresses of the high schools into spatial coordinates and to geocode the

41However, it does not cause any issue for the implementation of DA or DACB (the way the priorities

of students are set at schools that do not appear in their list has no impact on the final assignment).
42Many schools have rules referring to the district the student is studying at or living at. While we have

information on the district where individuals study, we do not have the exact students’ addresses (we only

have the ZIP codes). Hence, in some cases, we ignored the rule referring to the district where the student

lives.
43Our explanatory variables are based on the following student characteristics: scores of the standardized

Math test and the standardized English test for middle schoolers, the number of days of absence in the

previous school year and the number of days with class lates in the previous year. The standardized scores

of each of these variables constitute our set of explanatory variables.

53



ZIP code of the student into the spatial coordinates of its centroid. We used the library

Imap in R to compute the geodesic distance. The geodesic distance between two points is

specified by latitude/longitude using Vincenty inverse formula for ellipsoid. The distances

are expressed in miles.

S.13 Preference Estimates

Below we report the posterior means and standard deviations of the estimated parameters

obtained by the Gibbs sampling procedure. Estimates are made with submitted ranks of

70,559 students over 694 program choices.
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High Math Achievement

Main Effect −0.048∗∗

Baseline Math 0.064∗∗∗

Baseline English 0.034∗∗∗

Subsidized Lunch 0.007∗∗

Neighborhood Income 0.012∗∗∗

Limited English Proficient 0.018∗∗∗

Special Education −0.033∗∗∗

Percent Subsidized Lunch

Main Effect −0.020∗∗

Asian −0.021∗∗∗

Black 0.003∗∗

Hisp 0.031∗∗∗

Subsidized Lunch 0.029∗∗∗

Neighborhood Income in (10000s) −0.008∗∗∗

Size of 9th Grade

Main Effect −0.201∗∗∗

Baseline Math 0.043∗∗∗

Baseline English −0.031∗∗∗

Subsidized Lunch 0.108∗∗∗

Neighborhood Income G9 0.033∗∗∗

Special Education 0.006

Percent White

Main Effect 0.106∗∗∗

Asian −0.086∗∗∗

Black −0.149∗∗∗

Hisp −0.096∗∗∗
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Spanish Language Program

Limited English Proficiency −0.398

Limited English Proficiency x Hisp 6.399∗∗∗

Asian Language Program

Limited English Proficiency 2.297∗∗∗

Limited English Proficiency x Asian 6.393∗∗∗

Other Language Program

Limited English Proficiency 5.609∗∗∗

Standard Deviation of ε 25.78∗∗∗

Standard Deviation of ξ 5.66∗∗∗

Random Coefficients (Covariances)

Percent White : High Math Achievement 0.001∗∗∗

Percent White : Percent Subsidized Lunch 0.001∗∗∗

Percent White : Size of 9th Grade 0.000∗∗∗

Percent White : Percent White 0.006∗∗∗

Size of 9th Grade : High Math Achievement 0.000

Size of 9th Grade : Percent Subsidized Lunch 0.007∗∗∗

Size of 9th Grade : Size of 9th Grade 0.132∗∗∗

Percent Subsidized Lunch : High Math Achievement 0.000∗

Percent Subsidized Lunch : Percent Subsidized Lunch 0.004∗∗∗

High Math Achievement : High Math Achievement 0.015∗∗∗

Number of Students 70559

Number of Ranks 468163
Note: ∗∗∗ 0.001% significance
∗∗ 0.01% significance ∗ 0.05%

significance . 0.1% significance
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