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Abstract

In this paper, we are interested in the notions of robustness and contagion

in games with strategic complementarities. An action profile a? of a complete

information game g is said to be contagious if there is a ”nearby” incomplete

information game (i.e., an incomplete information game with payoffs coinciding

with those of g with high probability) where a? is the unique equilibrium play. On

the other hand, following the definition of Kajii and Morris (1997), a? is said to be

robust to incomplete information if every ”nearby” incomplete information game

has an equilibrium which generates behavior close to a?. We show that in games

with strategic complementarities, there always exists (at least) one contagious

equilibrium. This implies that games with strategic complementarities have at

most one robust equilibrium.

Finally, we establish a formal link between robustness and noise-independent

selection in global games that generalizes the result of Frankel, Morris and

Pauzner (2003): if an equilibrium is robust, then it is selected by the global

game approach whatever the distribution of the noise is.
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1 Introduction

Many economic settings can be modeled as games of strategic complementarities. It

is well-known that these games frequently have multiple equilibria (see for instance

Takahashi (2007)). It is then natural to assess the robustness of these equilibria with

respect to some given selection criterion. In this paper, focusing on the class of games

with strategic complementarities, we return to the classic question of how sensitive the

equilibrium predictions are to the assumption that payoffs are common knowledge.

Consider an analyst who plans to model some situation by a particular complete in-

formation game with strategic complementarities. He believes that the game describes

the environment correctly with high probability. But he is also aware that the players

may be facing some uncertainty about others’ payoffs which they will take into account

in choosing their strategies. It is then natural for him to check whether his predictions

will remain good predictions when (slightly) perturbing payoffs. To be specific, fix a

complete information game g. Say that a pure Nash equilibrium a∗ in g is contagious

if there exists a nearby incomplete information game (more precisely a sequence of

nearby games that converges toward g) with a unique (interim) rationalizable strategy

profile playing a∗ at any state of the world1. Following Kajii and Morris (1997) by

”nearby” incomplete information game, we mean that the sets of players and actions

are the same as in g and, with high probability, each player knows that his payoff func-

tion is almost the same as in g. We also follow Kajii and Morris (1997) and say that

a Nash equilibrium is robust to incomplete information if in every nearby incomplete

information game, there is a Bayes Nash equilibrium under which the ex ante induced

action distribution is close to the equilibrium.

Our first main result shows that any game with strategic complementarities pos-

sesses at least one contagious equilibrium. We interpret this result as an instability

1The notion of contagion under complete information is discussed in Kajii and Morris (1997), Morris

(1999a), Oyama and Tercieux (2005). A similar notion is used in the literature on evolutionary games:

the relationship is discussed in the conclusion of this paper.
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result. Indeed, as long as there are several equilibria (which again arises frequently in

this class of games), there is some nearby incomplete information games in which most

of them (actually: all but one) will never be played under any rationalizable strat-

egy profile. In particular, since the contagious equilibrium we exhibit is a pure Nash

equilibrium, properly mixed Nash equilibria (i.e. that are not pure Nash equilibria)

are never played in some nearby incomplete information games and so are not likely

to be good predictions i.e. they are not robust to incomplete information. Instability

of mixed Nash equilibria in games with strategic complementarities has already been

underlined using an evolutionary selection argument (see Kandori and Rob (1995),

Echenique and Edlin (2004), among others). We show that a similar result obtains for

a selection criterion based on incomplete information.

By definition, if there exists a robust equilibrium then there is at most one conta-

gious equilibrium (the robust one). Hence, if the game has strategic complementarities,

our result allows to show that if an equilibrium is robust, it is also the unique con-

tagious equilibrium. In particular, this shows that in this class of games if there is a

robust equilibrium it is the unique robust2. We know that there exists generic games

with strategic complementarities which do not have any robust equilibrium (see Morris

(1999b)). However, provided that there exists a robust equilibrium (for instance if the

game is a potential game, see Ui (2001)), our result shows that the notion of robustness

to incomplete information has a strong bite: it picks a unique equilibrium.

Our second main result shows a connection between the notion of robustness to

incomplete information and the well-known notion of global games (see Carlsson and

van Damme (1993), and Frankel, Morris and Pauzner (2001)): it shows that a robust

equilibrium is actually selected by global games and so is also justified by a global game

2Morris and Ui (2005) lists a number of open questions about the robustness of equilibria. In

particular they ask whether there exists a unique robust equilibrium given that it exists? We do not

know examples of generic games with multiple robust equilibria. Our result shows that in the specific

class of supermodular games, robust equilibria of generic games must be unique if they exist and so

partially answers this open question.
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argument. Recall that given a complete information game, the global games approach

builds an incomplete information game where each player observes a noisy signal of the

true payoffs. In a global game, payoffs evolve continuously along the state space and

are different at each state. In addition, it is assumed that the ex ante feasible payoffs

include payoffs that make the lowest and the highest actions strictly dominant. Thus,

with high ex ante probability payoffs are very different from the complete information

game. This is a crucial feature of global games which distinguishes the perturbation of

a global game with the one of nearby incomplete information game as defined above.

The main result in this literature shows that, as the noise becomes small, iterative strict

dominance eliminates all equilibria but one. We say that there is noise-independent

selection at some type t if as the noise goes to zero, the action profile played at t

does not depend on the distribution of the noise. This is an important notion since

the widely3 used uniqueness result of the global game literature has bite only if the

equilibrium selected does not depend on fine details of the model like the distribution

of the noise.

We show that a robust equilibrium is actually selected by global games: given a

type t in a global game, if the complete information game associated with t has a

robust equilibrium then it is selected by the global game whatever the distribution

of the noise is. Otherwise stated, robustness to incomplete information implies noise-

independent selection. Note that this result generalizes the sufficient conditions for

noise-independent selection provided in Frankel, Morris and Pauzner (2001) since the

existing sufficient conditions for robustness (see Morris and Ui (2005)) are more general

than the one for noise-independent selection provided in Frankel, Morris and Pauzner

(2001).

To prove our main results, we show the following connection: any equilibrium that

is selected in a global game for some distribution of noise at some type t is contagious

in the complete information game associated with t (i.e. the complete information

game where ex post payoffs at t are common knowledge). This intermediate result is

3See the survey by Morris and Shin (2003).
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actually the core of our argument. Our main results are derived from it.

The paper is organized as follows. Section 2 introduces formally the notions of con-

tagion, robustness and global games. Our results are presented in Section 3. Conclusion

and discussion of some extensions are provided in Section 4.

2 Preliminary definitions

In this section, we introduce the main notions that will be useful to present our results.

Throughout our analysis, we fix the set of players I = {1, . . . , I} and, for each player i,

the finite and linearly ordered set of actions Ai = {0, 1, . . . , ni}. We write A for Πi∈IAi

and A−i for Πj 6=iAj. A complete information game is specified by, and identified with, a

profile of payoff functions, g = (gi)i∈I , where gi : A→ R is the payoff function of player

i. We let ∆gi(ai → a′i, a−i) denote the difference in utility of player i from playing a′i

versus ai against the action profile a−i, i.e., ∆gi(ai → a′i, a−i) = gi(a
′
i, a−i)− gi(ai, a−i),

for all actions ai, a
′
i ∈ Ai and action profiles a−i ∈ A−i.

A game has strategic complementarities if for each player, whenever his opponents

raise their actions, the incentive to play higher actions increases.

Definition 1. The game g has strategic complementarities if whenever a′i ≥ ai, the

difference ∆gi(ai → a′i, a−i) is nondecreasing in a−i ∈ A−i, i.e., a′−i ≥ a−i implies:

∆gi(ai → a′i, a
′
−i) ≥ ∆gi(ai → a′i, a−i).

2.1 Incomplete information games

Given a complete information game g, we consider the following class of incomplete

information games. Each player i ∈ I has a countable set of types, denoted by Ti.

The state space is T =
∏

i∈I Ti. We write T−i =
∏

j 6=i Tj and t−i = (tj)j 6=i ∈ T−i. For

any nonempty, at most countable set S, we denote by ∆(S) the set of all probability

distributions on S. Let P ∈ ∆(T ) be the (common) prior probability distribution on

T . We assume that P satisfies Σt−i∈T−i
P (ti, t−i) > 0 for all i ∈ I and ti ∈ Ti. Under
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this assumption, the conditional probability of t−i given ti, P (t−i|ti), is well-defined

by P (t−i|ti) = P (ti, t−i)/
∑

t′−i∈T−i
P (ti, t

′
−i). The payoff function of player i ∈ I is a

bounded function ui : A× T → R. We write u for the profile of functions (ui)i∈I . We

represent an incomplete information game by (u, T, P ).

A (behavioral) strategy of player i ∈ I is a mapping σi : Ti → ∆(Ai), where

∆(Ai) is the set of probability distributions over Ai. Denote by Σi the set of strate-

gies for player i, and let Σ = Πi∈IΣi, σ = (σ1, . . . , σI) ∈ Σ, Σ−i = Πj 6=iΣj, and

σ−i = (σ1, . . . , σi−1, σi+1, . . . , σI) ∈ Σ−i. For a strategy σi, we denote by σi(ai|ti) the

probability that ai ∈ Ai is chosen at ti ∈ Ti. We write σ(a|t) = Πi∈Iσi(ai|ti) and

σ−i(a−i|t−i) = Πj 6=iσj(aj|tj). We also write σP (a) = Σt∈TP (t)σ(a|t). By a slight abuse

of notation, we will sometimes write a for the strategy profile σ where the action profile

a is always played, i.e., where σP (a) = 1.

The expected payoff of player i with type ti ∈ Ti playing ai ∈ Ai is:

Ui(ai, σ−i)(ti) =
∑

t−i∈T−i

P (t−i|ti)ui((ai, σ−i(t−i)), (ti, t−i)),

where ui((ai, σ−i(t−i)), (ti, t−i)) =
∑

a−i∈A−i
σ−i(a−i|t−i)ui((ai, a−i), (ti, t−i)). Let the

correspondence BRi : Σ−i × Ti → Ai be defined for each player i ∈ I by

BRi(σ−i)(ti) = arg max
ai∈Ai

{Ui(ai, σ−i)(ti)}.

By a slight abuse of notation, for each type ti ∈ Ti and for each belief µi ∈ ∆(A−i×

T−i) such that margT−i
µi = P (·|ti), we also write BRi(µi)(ti) for the set of actions

ai ∈ Ai that maximize the expected value of ui(ai, a−i, ti, t−i) under the probability

distribution µi, i.e.:

BRi(µi)(ti) = arg max
ai∈Ai

{
∑

a−i,t−i

µi(a−i, t−i)ui(ai, a−i, (ti, t−i))}.

Definition 2. A strategy profile σ ∈ Σ is a Bayesian Nash equilibrium of (u, T, P ) if,

for each player i ∈ I, all actions ai ∈ Ai, and all types ti ∈ Ti,

σi(ai|ti) > 0 ⇒ ai ∈ BRi(σ−i)(ti).
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We now introduce the solution concept we use for defining rationalizability. There

are several notions of rationalizability for incomplete information games. The one

we use, namely, interim correlated rationalizability (Battigalli (2003), Battigalli and

Siniscalchi (2003) and Dekel, Fudenberg, and Morris (2007)) is the weakest one, as

shown by Dekel, Fudenberg, and Morris (2007). Our results will remain valid under

any stronger notion of rationalizability.

For each i ∈ I, let R0
i [ti] = Ai for all types ti ∈ Ti. Then, for k = 1, 2, . . . , for each

player i ∈ I and each type ti ∈ Ti, define Rk
i [ti] recursively by

Rk
i [ti] =


ai ∈ Ai

∣∣∣∣∣∣∣∣∣∣∣∣

∃µi ∈ ∆(T−i × A−i) :

µi({(t−i, ai)|a−i ∈ Rk−1
−i [t−i]}) = 1;

margT−i
µi = P (·|ti);

ai ∈ BRi(µi)


,

where we denote Rk−1
−i [t−i] =

∏
j 6=iR

k−1
j [tj]. Let R∞i [ti] =

⋂∞
k=0R

k
i [ti].

Definition 3. A strategy σi ∈ Σi is a rationalizable strategy of player i in (u, T, P ) if

σi(ai|ti) > 0 ⇒ ai ∈ R∞i [ti]

for all ai ∈ Ai and ti ∈ Ti.

We define formally the notion of nearby incomplete information game. For two given

payoff functions gi and g′i, we define the distance ||gi − g′i|| = maxa∈A |gi(a) − g′i(a)|.

For given g and η > 0, consider the following subset T gi
η of Ti:

T gi
η = {ti ∈ Ti : ||ui(·, (ti, t−i))− gi|| ≤ η, ∀t−i ∈ T−i with P (ti, t−i) > 0}.

When ti ∈ T gi
η is realized (and when η is sufficiently small), player i knows that his

own payoffs are approximately given by gi. We write T g
η = Πi∈IT

gi
η .

Definition 4. Let ε ∈ [0, 1). The incomplete information game (u, T, P ) is an (ε, η)-

elaboration of the complete information game g if P [T g
η ] ≥ 1− ε.

The notion of (ε, η)-elaboration is slightly less restrictive than the notion of ε-

elaboration defined by Kajii and Morris (1997). More precisely, an ε-elaboration in

their sense is an (ε, 0)-elaboration in our sense.
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Definition 5. An action profile a? is contagious in g if for all η > 0 and ε ∈ (0, 1],

there exists (at least) one (ε, η)-elaboration (u, T, P ) of g where a? is always played in

the unique rationalizable strategy profile, i.e., where: R∞[t] = {a?}, ∀t ∈ T .

Notice that if an action profile is contagious in g, then it is a Nash equilibrium in

the complete information game g.

We now introduce the concept of robustness. We first recall the definition of a

robust equilibrium due to Kajii and Morris (1997).

Definition 6. An action profile a? is robust to incomplete information in g if, for every

δ > 0, there exists ε > 0 such that any ε-elaboration (u, T, P ) of g has a Bayesian Nash

equilibrium σ such that σP (a?) ≥ 1− δ.

If an action profile is robust to incomplete information in g, then it is a Nash

equilibrium in the complete information game g. Since we define ”nearby” incom-

plete information games by using the notion of (ε, η)-elaboration (and not that of

ε-elaboration), our definition for robustness is slightly stronger than the one of Kajii

and Morris (1997).

Definition 7. An action profile a? is strictly robust to incomplete information in g if,

for every δ > 0, there exists ε > 0 and η > 0 such that any (ε, η)-elaboration (u, T, P )

of g has a Bayesian Nash equilibrium σ such that σP (a?) ≥ 1− δ.

Note that whenever an equilibrium is strictly robust, it is a strict Nash equilibrium.

2.2 Global Games

Following the definition of Frankel, Morris and Pauzner (2003) (FMP hereafter), we

now introduce formally the notion of a global game. A state θ is drawn from the real

line according to a continuous density ψ with support [−1, 1]. Each player i observes

a signal xi = θ+ νζi, where ν > 0 is a scale factor and each ζi is distributed according

to a continuous density φi with support contained in the interval [−1
2
, 1

2
]. The state

variable θ and the set of variables {ζi}i∈I are jointly independent.
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If player i chooses action ai ∈ Ai, her ex-post payoff is vi(ai, a−i, θ) where θ is the

realized state parameter and a−i is the action profile of i’s opponents. We denote by

v(·, θ) the complete information game associated to the state θ. As in FMP, we suppose

that the following assumptions are satisfied.

A 1. [Payoff continuity] For each player i and each a ∈ A, the function vi(a, ·) :

[−1, 1] → R is continuous.

A player’s incentive to raise her action is weakly increasing in her opponent’s actions:

A 2. [Strategic Complementarities] For all θ ∈ [−1, 1], the complete information game

v(·, θ) has strategic complementarities.

When the state is strictly higher, strictly higher actions are more appealing.

A 3. [State monotonicity] There is a real number K > 0 such that for all a−i, ai < a′i,

and θ, θ
′ ∈ [−1, 1] such that θ ≤ θ

′
,

∆vi(ai → a′i, a−i, θ
′
)−∆vi(ai → a′i, a−i, θ) ≥ K(θ

′ − θ).

Finally, for each player i, for extreme values of the payoff parameter, the extreme

actions 0 and ni are strictly dominant:

A 4. [Dominance Regions] There exists d > 0 such that, for all θ < −1 + d and for

each player i, action 0 is strictly dominant in the complete information game v(·, θ).

Symmetrically, for all θ > 1− d action ni is strictly dominant for each player i.

Since we are interested in the strategic behavior of the agents when the noise (and

the scale factor ν) is small, we will always assume that: ν < d.

We will represent a global game by the notation Gν(v, ψ, φ). The solution concept

used in the global games literature is iterative strict dominance. Note that Dekel,

Fudenberg and Morris (2007) have shown that the notion of iterative strict dominance

is equivalent to the notion of interim correlated rationalizability, so we will use these two

notions interchangeably. The following result (proved in FMP) shows that as the signal

errors shrink to zero, this process selects an essentially unique Bayesian equilibrium of

the game.
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Theorem 1 (FMP (2003)). The global game Gν(v, ψ, φ) has an essentially unique

strategy profile surviving iterative strict dominance in the limit as ν → 0. It is an

increasing pure strategy profile. More precisely, there exists an increasing pure strategy

profile s?
φ such that if, for each ν > 0, sν is a pure strategy profile that survives iterative

strict dominance in Gν(v, ψ, φ), then for each player i, limν→0 s
ν
i (xi) = s?

i,φ(xi) for all

xi, except possibly at the finitely many discontinuities of s?
φ,i.

3 Main Results

In this section, we present and provide proofs for our results.

3.1 Contagion

Theorem 1. Assume that g has strategic complementarities. Then, it has (at least)

one contagious action profile.

Thus, any game with strategic complementarities has a contagious equilibrium.

This result has several implications in particular, regarding the notion of robustness to

incomplete information.

The following corollaries trivially follow from Theorem 1.

Corollary 1. Assume that a? is strictly robust to incomplete information in g. Then,

it is contagious in g and there is no other strictly robust action profile in g.

Corollary 2. No (properly) mixed Nash equilibrium can be strictly robust to incomplete

information in g.

3.2 Global Games

We know that as the noise vanishes, a unique equilibrium is selected in a global game.

However, in the general case, as FMP have shown, different ways of embedding a

complete information game into global games (with different noise structures) may

lead to different selections. Hence, on an operational point of view, the uniqueness
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result of global games seems to have bite only if the equilibrium selected is not too

sensitive to the distribution of noise. This motivates the following definition.

For given θ ∈ [−1, 1], we write
−→
θ for the vector of signals (x1, . . . , xI) where xi = θ

for each player i.

Definition 8. Let v : A× [−1, 1] → RI be a profile of payoff functions satisfying A1-

A4. An action profile a? ∈ A is said to be noise-independently selected at some payoff

parameter θ ∈ [−1, 1] if, for all information structures (ψ, φ), the following conditions

are satisfied.

1. The strategy profile s?
φ (see definition in theorem 1) is continuous at

−→
θ .

2. We have: s?
φ(
−→
θ ) = a?.

The following result is an extension of FMP and Oury (2007).

Theorem 2. Let v : A× [−1, 1] → RI be a profile of payoff functions satisfying A1-A4.

Assume that, for some θ ∈ [−1, 1], the complete information game v(·, θ) has a strictly

robust action profile a?. Then a? is noise-independently selected at θ.

3.3 Proofs

In this subsection, we prove Theorems 1 and 2. We need the following core intermediate

result whose proof is rather technical and is given in Appendix. Write s?
φ (s̄?

φ) for the

left (right) continuous version of s?
φ.

Proposition 1. For all θ ∈ [−1, 1], the action profile s?
φ(
−→
θ ) is contagious in the

complete information game v(·, θ). The same result is true for the action profile s̄?
φ(
−→
θ ).

Proof of Proposition 1. See Appendix.

In a global game, the state space is a continuum while in an ε- elaboration, the

type space is discrete. This is why the proof of Proposition 1 involves a discretisation

argument and is rather technical. In the following lines, we give an intuition of the

proof.
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As in FMP, we need for our proof to define a simplified notion of global game. The

simplified version Gν
?(v, φ) of the global game Gν(v, ψ, φ) is a game in which, for each

i ∈ I, player i’s prior over θ is uniform over [−1, 1], and player i’s payoff depends

directly on her signal xi instead of the realized state θ. More precisely, the payoff

to player i if action profile (ai, a−i) is chosen and she observes signal xi is given by

vi(ai, a−i, xi) if xi ∈ [−1, 1] and vi(ai, a−i,−1) (resp. vi(ai, a−i, 1)) if xi < −1 (resp.

xi > 1). Finally, as in the global game Gν(v, ψ, φ), the noise structure in the simplified

game Gν
?(v, φ) is characterized by the profile φ of probability density functions and the

noise parameter ν.

The reason why FMP used the simplified game Gν
?(v, φ) in their proofs is the fol-

lowing. On the one hand, as the noise errors vanish, the game Gν(v, ψ, φ) ”converges”

toward the simplified game Gν
?(v, φ). Indeed, when the signal errors tend toward zero,

each player is almost sure that the true payoff parameter θ is very close to her signal.

Since the density ψ is continuous, it is approximately constant on the small interval of

values that are still possible given her signal. On the other hand, the analysis of the

simplified game Gν
?(v, φ) is much simpler than that of the global game Gν(v, ψ, φ). In

particular, FMP have proved the following (intermediate) result which will be useful

in the sequel.

Lemma A 1 (FMP (2003)). Let Gν
?(v, φ) be a simplified global game. There exists a

weakly increasing strategy profile sν
φ such that any profile that survives iterative strict

dominance in Gν
?(v, φ) must agree with sν

φ except perhaps at the finitely many discon-

tinuities of sν
φ.

Fix some arbitrarily small scale factor ν and consider the game Gν
?(v, φ). We

need some additional notations. For each player i, define the family of thresholds

{θν(ai)}ai∈Ai
by

θν(ai) = inf{xi|sν
φ,i(xi) ≥ ai}.

For each player i and all actions ai 6= ni, we write a+
i for the smallest action strictly

larger than ai and played under sν
φ,i. Symmetrically, for all actions ai 6= 0, we write a−i
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for the largest action strictly smaller than ai and played under sν
φ,i. (By convention,

we write n+
i = ni and 0− = 0.)

Let θ̃ ∈ [−1, 1] be such that there is no threshold signal in the interval [θ̃−ν, θ̃+ν].

Put differently, assume that the payoff state θ̃ is such that there exists an action profile

ã satisfying: θν(ãi) < θ̃ − ν and θν(ã+
i ) > θ̃ + ν, for each player i. Let ai ∈ Ai be

an action played under sν
φ,i and strictly larger than ãi. Since s?

φ is an equilibrium,

when player i receives signal θν(ai) and faces the strategy profile s?
φ,−i, she is exactly

indifferent between actions ai and a−i . Recall that, since the noise is assumed to be very

small, when the player i receives signal θν(ai), her payoffs are approximately given by

the function vi(·, θν(ai)). Consequently, by state monotonicity (Assumption 3), if her

payoffs were given by the function vi(·, θ̃) (instead of vi(·, θν(ai))), she would strictly

prefer at signal θν(ai) action a−i to action ai. Hence, by continuity (Assumption 1) and

since the action space A is finite, there exists δ > 0 such that for each player i, for all

actions ai > ãi and for all signals xi ∈ [θν(ai), θ
ν(ai) + δ], player i’s best response at

signal xi (if her payoffs were given by vi(·, θ̃) instead of vi(·, xi )) would be lower than

(or equal to) a−i .

Now consider the following incomplete information game Gν
??(v(·, θ̃), φ). The state

variable θ is uniformly distributed over some interval [−1, ω] where ω > 0 is a (very)

large real number. The noise structure is the same as in the global game Gν
?(v, ψ, φ):

when the payoff state θ is realized, each player i receives a signal xi = θ+νζi (where ζi

is distributed according to the density function φi). The payoff structure of the game

Gν
??(v(·, θ̃), φ) is defined as follows. If θ ∈ [1, ω − 2], the payoffs of each player i are

given by the function vi(·, θ̃). If θ ∈ [−1, 1] ∪ [ω − 2, ω], the payoffs of player i are

such that action ãi is strictly dominant. Hence, ignoring the fact that the state space

in the game Gν
??(v(·, θ̃), φ) is a continuum, its payoff structure is similar to that of an

ε-elaboration of the complete information game v(·, θ̃) (with ε small).

Write l̄νφ for the following transformation of the strategy profile sν
φ. For each player

i, l̄νφ,i(xi) is equal to

• ãi if xi < θν(ã+
i ),
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• sν
φ,i(xi) if xi ∈ [θν(ã+

i ), 1] , and,

• ni if xi > 1.

Notice that, because of the lower dominance region, each undominated strategy

profile must be lower than l̄νφ. In addition, recall that θν(ãi) < θ̃−ν and θν(ã+
i ) > θ̃+ν.

Consequently, even if l̄νφ,i(xi) 6= sν
φ,i(xi) when xi < θν(ãi), the following property is by

construction satisfied: for all action ai > ãi, the distribution of action profiles faced

by player i at signal θν(ai) under the strategy profile l̄νφ in the game Gν
??(v(·, θ̃), φ) is

the same as that faced by player i at the same signal in the game Gν
?(v, φ) under the

strategy profile sν
φ. Hence, by the above argument, there exists δ > 0 such that, for

each player i, if a strategy si is a best response to the strategy profile l̄νφ,−i, we must

have: si(xi) ≤ l̄νφ,i(xi − δ) if xi > −1 + δ and si(xi) = ãi otherwise.

By strategic complementarities (Assumption 2), this means that each strategy sur-

viving two rounds of elimination of strictly dominated strategies must satisfy the same

property. Iterating this argument, we prove that in each rationalizable strategy, the

actions chosen by player i must be smaller than ãi. A symmetric argument can be used

to prove that in the unique rationalizable strategy profile of the game Gν
??(v(·, θ̃), φ),

the action profile ã is always played.

Using Proposition 1, we now give the proof of Theorem 1.

Proof of Theorem 1. For each player i, we define the payoff function vi : A× [−1, 1] →

R to be such that for all θ ∈ [−1, 1], all actions ai ∈ {0, 1, . . . , ni} and all action profiles

a−i ∈ A−i,

vi(ai, a−i, θ) = gi(ai, a−i) + αaiθ,

where α > 0 is sufficiently large for Assumption 4 (Dominance Regions) to be satisfied.

It can easily be checked that Assumptions 1, 2, and 3 are also satisfied. It is thus

possible to define a global gameGν(v, ψ, φ) where ψ is some continuous density function

with support [−1, 1] and φ = (φi)i∈I is a vector of continuous density functions with

support contained in the interval [−1
2
, 1

2
]. By Proposition 1, we know that s?

φ(0) is

contagious in the complete information game g, which completes the proof.
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We now turn to the proof of Theorem 2.

Proof of Theorem 2. Since the action profile a? is a robust equilibrium in the complete

information game v(·, θ) , no other action profile may be contagious in v(·, θ). Hence,

by Proposition 1, for any profile φ of density functions, we must have:

s?
φ(
−→
θ ) = a? = s̄?

φ(
−→
θ ).

Since the strategy profile s?
φ is weakly increasing, this implies in particular that s?

φ

is continuous at θ? and that: s?
φ(
−→
θ ) = a?.

4 Conclusion

In this paper, we proved two main results. First, the existence of a contagious equi-

librium in games with strategic complementarities. Second, we prove that robustness

implies noise independent selection. Here, we used the notion of contagion and robust-

ness in incomplete information games. Closely related notions have been used in the

literature on evolutionary games as well as in the one on perfect foresight dynamics (à

la Matsui and Matsuyama (1995)). Connections between those notions and settings

have been discussed in Morris (1999, 2000) and Takahashi (2007). We believe that our

results can have counter-parts in these different settings. Let us briefly illustrate why

using the notion of contagion in evolutionary settings .

Roughly, this notion of contagion is usually defined in local interaction games,

i.e. games where players are placed on a network and interact only with their direct

neighborhood. In those games, a time structure is assumed: at each date t, players

choose a best reply to the average strategy played by their neighbors at date t− 1. We

say that an equilibrium a∗ is contagious if there exists some network structure such

that whenever a small fraction of players play a∗, this action is eventually played by

every player on the whole network. It is clear that the two notions of contagion: under

incomplete information games and under local interaction games have a similar flavor.

We believe that – drawing on this connection – our results have their counter-part

15



in an evolutionary setting, for instance there should always exist a contagious (in the

evolutionary sense above) equilibrium in games with strategic complementarities. This

is left for further research.
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A Proof of Proposition 1

We consider the simplified global game Gν
?(v, φ) defined in subsection 3.3. Recall that

sν
φ is the (essentially) unique equilibrium of Gν

?(v, φ). The following lemma is the core

of the proof of Proposition 1.

Lemma 1. Consider a payoff parameter θ̃ ∈ [−1, 1] and an action profile ã ∈ A such

that for all states θ ∈ [θ̃ − ν, θ̃ + ν], we have: sν
φ(
−→
θ ) = ã. Then, the action profile ã is

contagious in the complete information game v(·, θ̃).

Proof of Lemma 1. Throughout this proof, the scale factor ν is fixed. Hence, it is

sometimes omitted in the superscripts.

Let ε > 0. To prove Lemma 1, we build an ε-elaboration which is similar to the

game Gν
??(v(·, θ̃), φ) defined in subsection 3.3. For any positive integer N and each

player i, we define the set of types TN
i by

TN
i = [−ωN ν

N
,−(ωN − 1)

ν

N
, . . . , (ωN − 1)

ν

N
, ωN ν

N
],

where ωN is a positive integer. We write TN =
∏

i∈I T
N
i and, for each player i,

TN =
∏

j 6=i T
N
j .

We define the function F : RI → R by:

F (x1, . . . , xI) =
1

νI

∫
t∈R

∏
i∈I

φi(
xi − t

ν
)dt.

For all type profiles t ∈ TN , the prior distribution PN(t1, . . . , tI) is equal to F (t)/βN

where βN > 0 is such that:
∑

t∈T N PN(t) = 1. For each player i, the payoff function

ui : A× TN → R is such that:

1. Types ti in the intervals [−ωNν/N,−ωNν/N + 2] and [ωNν/N − 2, ωNν/N ] have

a dominant strategy to play action ãi;

2. For all types ti in the interval (−ωNν/N + 2, ωNν/N − 2), we have:

ui(·, (t−i, ti)) = vi(·, θ̃),

for all t−i ∈ TN
−i.
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We fix ωN sufficiently large for the incomplete information game (u, TN , PN) to be

an ε-elaboration. We will show that when N is sufficiently large (i.e., when the step

of the discretization ν
N

is small enough), the ε-elaboration (u, TN , PN) has a unique

strategy profile surviving iterated deletion of strictly dominated strategies in which the

action profile ã is always played. Otherwise stated, we will prove that there exists N̄

such that, for all integers N > N̄ , R∞[t] = ã, for all t ∈ TN .

For the ε-elaboration (u, TN , PN) and for all relative integers k in the interval

[−ωN , ωN ], consider the increasing strategy profile s̄k defined as follows for each player

i:

• s̄k
i (ti) = ãi, if ti < kν/N + 1 + θν(ã+

i ),

• s̄k
i (ti) = ai, if ti ∈ [kν/N + 1 + θν(ai), kν/N + 1 + θν(a+

i )) for ai ∈ (ãi, ni), and,

• s̄k
i (ti) = ni, if ti ≥ kν/N + 1 + θν(ni).

By construction, for each relative integer k ∈ [−ωN , ωN − 1]: s̄k ≥ s̄k+1. More

precisely, we have for each player i and all types ti > −ωN ν
N

: s̄k+1
i (ti) = s̄k

i (ti − ν
N

).

In addition, since, for each player i, θν(ã+
i ) > −1, action ãi is always chosen in the

strategy s̄ωN

i . In the sequel of the proof, we will establish that when N is sufficiently

large, the best response to s̄k is (weakly) lower than s̄k+1 for all k ∈ [−ωN , ωN − 1].

We first need to define some additional notations. For each ai ≥ ãi, we denote

by tNi (k, ai) the lowest type of player i where an action greater than or equal to ai is

played in the strategy s̄k
i in the ε-elaboration (u, TN , PN). We write Pr[a−i|θν(ai)] for

the probability of action profile a−i for player i upon receiving the signal θν(ai) when

she faces the strategy profile sν
φ,−i in the global game Gν

?(v, φ). Similarly, we write

Pr[a−i|tNi (k, ai)] for the probability of action profile a−i for player i upon receiving the

signal tNi (k, ai) when she faces the strategy profile s̄k
−i in the game (u, TN , PN).

Claim 1. For all δ > 0, there exists N̄(δ) such that, for all N > N̄(δ), all relative

integers k ∈ [−ωN , ωN ], each player i, and each action ai > ãi such that tNi (k, ai) ∈

[−ωNν/N + 2, ωNν/N − 2]:

|Pr[a−i|tNi (k, ai)]− Pr[a−i|θν(ai)]| < δ, (1)
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for all action profiles a−i ∈ A−i.

Proof of Claim 1. We distinguish two cases. First suppose that a−i is not (weakly)

higher than ã−i, i.e., that there exists j 6= i such that aj < ãj. By hypothesis, we

know that for all states θ ∈ [θ̃− ν, θ̃+ ν], sν
φ(θ) = ã. Consequently, θν(ãi) ≤ θ̃− ν and

θν(ã+
i ) ≥ θ̃ + ν for each player i ∈ I. We deduce: Pr[a−i|θν(ai)] = 0 for all actions

ai > ãi. On the other hand, since for all t ∈ TN and all integers k ∈ [−ωN , ωN ]

s̄k(t) ≥ ã, it is by construction trivially true that: Pr[a−i|tN(k, ai)] = 0 for all actions

ai > ãi.

Now we examine the second case, i.e. we suppose that a−i ≥ ã−i. First consider

the global game Gν
?(v, φ). Recall that when the realized state is θ, for each player

i, the conditional density function of the signal xi is given by 1
ν
φi(

xi−θ
ν

). Because of

the dominance regions in the global game Gν
?(v, φ) (Assumption 4), we know that

θν(ai) ∈ [−1 + ν, 1 − ν] for all ai ∈ Ai. Since in the simplified game, the prior is

uniformly distributed on the interval [−1, 1], using Bayes’ rule, we deduce that the

conditional density function of type profile x−i for type θν(ai) is given by:

1

νI−1

∫ θν(ai)+
ν
2

θν(ai)− ν
2
φi(

θν(ai)−θ
ν

)
∏

j 6=i φj(
xj−θ

ν
)dθ∫ θν(ai)+

ν
2

θν(ai)− ν
2
φi(

θν(ai)−θ
ν

)dθ
.

By the following change of variable εi = θν(ai)−θ
ν

in the denominator we obtain:

∫ θν(ai)+
ν
2

θν(ai)− ν
2

φi(
θν(ai)− θ

ν
)dθ = ν

∫ 1
2

− 1
2

φi(εi)dεi = ν.

Notice that φi(
θν(ai)−θ

ν
) > 0 only if θ ∈ [θν(ai) − ν

2
, θν(ai) + ν

2
]. Hence, we finally

obtain that the conditional density function of type profile x−i for type θν(ai) is equal

to F (x−i, θ
ν(ai)).

For each action profile a−i ∈ A−i, write D(a−i) for Πj 6=i[θ
ν(aj), θ

ν(a+
j )). We now

know that the probability Pr[a−i|θν(ai)] of a−i for type θν(ai) in the game Gν
?(v, φ)

when the strategy profile sν
φ is played is:

∫
x−i∈D(a−i)

F (x−i, θ
ν(ai))dx−i.
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For all x−i ∈ [−1, 1]I−1, let x′−i be defined by x′j = xj − θν(ai) for all j 6= i. Note

that we have: F (x−i, θ
ν(ai)) = F (x−i − θν(ai), 0). Hence, by a change in variable, we

obtain:

Pr[a−i|θν(ai)] =

∫
x′−i∈D(a−i,ai)

F (x′−i, 0)dx′−i,

where D(a−i, ai) =
∏

j 6=i[θ
ν(aj)− θν(ai), θ

ν(a+
j )− θν(ai)).

Now, consider the game (u, TN , PN). The ex ante probability of type tNi (k, ai) is

∑
t−i∈T N

−i

PN(t−i, t
N
i (k, ai)).

For all t−i ∈ [−ν, ν]I−1, define t′−i by t′j = tj +t
N
i (k, ai) for all j 6= i. Since by hypothesis

tNi (k, ai) ∈ [−ωNν/N+2, ωNν/N−2], for each j 6= i, we have: t′j ∈ [−ωNν/N, ωNν/N ]

and thus t′−i ∈ TN
−i. As a consequence, we have: PN(t′−i, t

N
i (k, ai)) = PN(t−i, 0) and

the ex ante probability of type tNi (k, ai) can be rewritten as:∑
t′−i∈[−ν,ν]I−1

PN(t′−i, 0).

Hence, using Bayes’ rule, the probability Pr(t−i|tNi (k, ai)) of t−i for type tNi (k, ai)

is

PN(t−i, t
N
i (k, ai))∑

t′−i∈[−ν,ν]I−1 PN(t′−i, 0)
.

For each action profile a−i, the probability Pr[a−i|tNi (k, ai)] of a−i for type tNi (k, ai)

when the strategy profile s̄k is played in the incomplete information game (u, TN , PN)

is thus:

∑
t−i∈Dk(a−i)

PN(t−i, t
N
i (k, ai))∑

t′−i∈[−ν,ν]I−1 PN(t′−i, 0)
,

where Dk(a−i) = Πj 6=i[t
N
j (k, aj), t

N
j (k, a+

j )).

Define t′−i by t′j = tj − tNi (k, ai) for all j 6= i. By this change of variable, we finally

obtain:

Pr[a−i|tNi (k, ai)] =

∑
t′−i∈Dk(a−i,ai)

PN(t′−i, 0)∑
t′−i∈[−ν,ν]I−1 PN(t′−i, 0)

,
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where Dk(a−i, ai) = Πj 6=i[t
N
j (k, aj)− tNi (k, ai), t

N
j (k, a+

j )− tNi (k, ai)).

Notice that for all t′−i ∈ [−ν, ν]I−1,

PN(t′−i, 0) = (
N

ν
)I−1

∫
x−i∈L(t′−i)

PN(
ν

N
E[
N

ν
x−i], 0)dx−i,

where L(t′−i) =
∏

j 6=i[t
′
j, t

′
j + ν

N
] and E : RI−1 → ZI−1 is the integer value function,

i.e., for all x−i ∈ RI−1, E(x−i) = supz−i∈ZI−1{z ≤ x−i}.

As a consequence,

∑
t′−i∈[−ν,ν]I−1

PN(t′−i, 0) = (
N

ν
)I−1

∫
x−i∈[−ν,ν+ ν

N
]I−1

PN(
ν

N
E[
Nx−i

ν
], 0)dx−i.

And similarly,

∑
t′−i∈Dk(a−i,ai)

PN(t′−i, 0) = (
N

ν
)I−1

∫
x−i∈[−ν,ν+ ν

N
]I−1

IDk(a−i,ai)P
N(

ν

N
E[
Nx−i

ν
], 0)dx−i,

where IDk(a−i,ai) is the indicator function of Dk(a−i, ai).

Thus Pr[a−i|tNi (k, ai)] can be rewritten as:

βN
∫

x−i∈[−ν,ν+ ν
N

]I−1 IDk(a−i,ai)P
N( ν

N
E[Nx−i

ν
], 0)dx−i

βN
∫

x−i∈[−ν,ν+ ν
N

]I−1 PN( ν
N

E[Nx−i

ν
], 0)dx−i

. (2)

For each player i, the density φi is continuous. As a consequence, the function F is

also continuous and for each x−i ∈ [−ν, ν + ν
N

]I−1,

lim
N→∞

βNPN(
ν

N
E[
Nx−i

ν
, 0]) = F (x−i, 0).

Hence, by the dominated convergence theorem, the denominator in the formula (2)

tends toward
∫

x−i∈[−ν,ν]I−1 F (x−i, 0)dx−i as N →∞. In addition,∫
x−i∈[−ν,ν]I−1 F (x−i, 0)dx−i =

1
νI

∫ ν
2

− ν
2
φi(

−θ
ν

)
∏

j 6=i

∫
xj∈[−ν,ν]

φj(
xj−θ

ν
)dxjdθ.

Notice that for all θ ∈ [−ν
2
, ν

2
], we have:

∫ ν

−ν
φj(

xj−θ

ν
)dxj = ν. Thus, the above

expression is equal to: 1
ν

∫ ν
2

− ν
2
φi(

xi−θ
ν

)dθ = 1.
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Regarding the numerator of the formula (2), by construction, for any integer k and

each player i, we have:

tNi (k, ai) =
ν

N
(k + E[(1 + θν(ai))

N

ν
]),

for all actions ai > ãi. Consequently, for all actions ai, aj > ãi,

tNj (k, aj)− tNi (k, ai) =
ν

N
(E[(1 + θν(aj))

N

ν
]− E[(1 + θν(ai)

N

ν
])

does not depend on k. Otherwise stated, Pr[a−i|tNi (k, ai)] = Pr[a−i|tNi (k′, ai)] for

all integers k and k′ such that tNi (k, ai) and tNi (k′, ai) belong to the interval [−ωN ν
N

+

2, ωN ν
N
− 2]. Besides, tNj (k, aj) − tNi (k, ai) tends toward θν(aj) − θν(ai) as N tends

toward infinity.

Hence, by the dominated convergence theorem, we conclude that Pr[a−i|tN(k, ai)]

converges toward Pr[a−i|t(ai)] for all a−i and all ai > ãi. Since the space of action

profiles A is finite, this completes the proof.

Claim 2. There exists an integer N̄ such that for all N > N̄ and for each player i,

max BRi(s̄
k−1
−i ) ≤ s̄k

i (3)

for all integers k ≥ 1− ωN in the incomplete information game (u, TN , PN).

Proof of Claim 2. We prove this result by induction. Because of the dominance regions

in the global game Gν
?(v, φ) (Assumption 4), we know that, for each player i, θν(ni) <

1 − ν. This implies that the strategy profile s̄1−ωN
is such that, for each player i and

each type ti ≥ (1− ωN)ν/N + 2− ν ≥ −ωNν/N + 2,

s̄1−ωN

i (ti) = ni.

Consequently, because of the dominance regions in the incomplete information game

(u, TN , PN), Equation (3) is true for k = 1 − ωN . Assume that it is true at rank k.

We prove that it is true at rank k + 1.
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First assume that ti ∈ (tNi (k, a−i ), tNi (k, ai)) for some ai > ãi. In this case, by

construction, we know that for all i, ai, and k, ti(k, ai) = ti(k + 1, ai) − ν
N

. Hence,

ti ∈ [tNi (k + 1, a−i ), tNi (k + 1, ai)]. Thus, s̄k
i (ti) = a−i = s̄k+1

i (ti). Hence we get:

max BRi(s̄
k
−i)(ti) ≤ max BRi(s̄

k−1
−i )(ti) ≤ a−i = sk+1

i (ti)

where the first inequality comes from strategic complementarities (Assumption 2), and

so monotonicity of BRi(·), the second inequality is by the inductive hypothesis and

the equality by construction of sk+1
i .

Now, assume that there exists some ai > ãi such that ti = tNi (k, ai). If the type ti

is lower than −ωNν/N + 2 or higher than ωNν/N − 2, action ãi is strictly dominant

for type ti. On the other hand, assume that the type ti is in the interval [−ωNν/N +

2, ωNν/N − 2]. By respectively, strategic complementarities (and so monotonicity of

BRi(·)) and the inductive hypothesis, we know that:

max BRi(s̄
k
−i(ti)) ≤ max BR(s̄k−1

−i )(ti) ≤ sk
i (ti) = ai

We will show that there exists N̄ such that for all N > N̄ , the type ti strictly prefers

action a−i to ai in the incomplete information game (u, TN , PN) when the strategy

profile s̄k
−i is played. Otherwise stated, maxBRi(s̄

k
−i)(ti) ≤ a−i = sk+1

i (ti). We will

show that N̄ can be taken independently of ai, ti, and k and so this will complete the

proof.

Type ti knows that his payoffs are given by vi(·, θ̃). Using State Monotonicity

(Assumption 3) (recall that the following expectations are computed assuming sν is

played):

∑
a−i

Pr(a−i | θν(ai))∆vi[ai → a−i , a−i, θ̃]

>
∑

a−i
Pr(a−i | θν(ai))∆vi[ai → a−i , a−i, θ

ν(ai)] +K(θν(ai)− θ̃).

(By hypothesis we know that K(θν(ai)− θ̃) > ν.)

Let us define sν
i (θ

ν(ai)
+) = minx{si(x) | x ≥ θν(ai)} and sν

i (θ
ν(ai)

−) = maxx{si(x) |

x ≤ θν(ai)}. In the simplified global game Gν
?(v, φ), by payoff continuity (A1), player
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i is indifferent between the actions sν
i (θ

ν(ai)
+) and sν

i (θ
ν(ai)

−) upon receiving signal

θν(ai) when she faces the strategy profile sν
−i. Hence,∑

a−i

Pr(a−i | θν(ai))∆vi[ai → a−i , a−i, θ
ν(ai)] = 0

and so we obtain:

∑
a−i

Pr(a−i | θν(ai))∆vi[ai → a−i , a−i, θ̃] > K(θν(ai)− θ̃).

On the other hand, by Claim 1, we know that there exists N̄ (which does not

depend on ai, ti and k) such that for all N > N̄ ,

|
∑

a−i
Pr(a−i | tNi (k, ai))∆ui[ai → a−i , a−i, t

N
i (k, ai)]

−
∑

a−i
Pr(a−i | θν(ai))∆vi[ai → a−i , a−i, θ̃] |< K(θν(ai)− θ̃)

(recall that at ti player i knows his own payoffs and that ui(·, tNi (k, ai)) = vi(·, θ̃)) Thus

we get
∑

a−i
Pr(a−i | tNi (k, ai))∆ui[ai → a−i , a−i, t

N
i (k, ai)] > 0. Hence, a−i is strictly

preferred to ai. This reasoning can be applied to to any bi > a−i , which shows that

maxBRi(s̄
k
−i)(ti) ≤ a−i as claimed.

We now complete the proof of Lemma 1. Consider what happens when we iteratively

delete strictly dominated strategies in the ε-elaboration (u, TN , PN) with N > N̄ .

Because of the dominance regions in the simplified global game G?
ν(v, φ) (Assumption

4), we know that for all i, θν(ni) < 1 − ν. Consequently, for each player i, and all

ti > −ωNν/N + 2, we have: s̄−ωN
(ti) = ni. Hence, because of the lower dominance

region in the ε−elaboration (u, TN , PN), we must have for each i: si ≤ s̄−ωN

i for any

strategy profile s which is not strictly dominated in the game (u, TN , PN). Now any

strategy profile s which survives 2 rounds of deletion of strictly dominated strategies

must satisfy: si ≤ maxBRi(s̄
−ωN

−i ) ≤ s̄1−ωN

−i where the first inequality comes strategic

complementarities (Assumption 2) while the second comes from Claim 2. Iteration of

this reasoning yields that any strategy profile s surviving k rounds of deletion of strictly

dominated strategies must satisfy: s ≤ s̄(k−1)−ωN
for all integers k ∈ [1, 2ωN +1]. Recall
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that, for all types ti ∈ TN
i , s̄ωN

i (ti) = ãi. We deduce that, in each rationalizable strategy

profile s, each player i always chooses an action (weakly) lower than ãi.

A symmetric construction applies to prove that, in each rationalizable strategy

profile s, each player i always chooses an action (weakly) greater than ãi.

Recall that s?
φ is the (essentially) unique strategy profile surviving iterative strict

dominance in the global game Gν(v, ψ, φ) as the scale factor ν tends toward zero.

Lemma 2. Let θ ∈ [−1, 1] be such that the strategy profile s?
φ is continuous at

−→
θ . Then

there exists ν > 0 such that in the simplified global game Gν
?(v, φ), sν

φ(
−→
θ′ ) = s?

φ(
−→
θ ) for

all θ′ ∈ [θ − ν, θ + ν].

Proof of Lemma 2. The strategy profile s?
φ is continuous at

−→
θ . This means that for

each player i,

θ?(s?
φ,i(θ)) < θ < θ?(s?

φ,i(θ)
+).

On the other hand, FMP have proved (Lemmas A3 and A4) that the sequence

of strategy profiles {sν
φ}ν∈(0,ν̄] converges point-wise toward the strategy profile s?

φ.

More precisely, for each player i and all actions ai ∈ Ai, the sequence of thresholds

{θν(ai)}ν∈(0,ν̄] converges toward the threshold θ?(ai) as ν tends toward zero.

We deduce that there is a scale factor νi > 0 such that

θνi(s?
φ,i(θ)) + νi < θ < θ?(s?

φ,i(θ)
+)− νi.

Since there is a finite number of players, ν = mini νi > 0 which completes the proof.

We can now conclude the proof of Proposition 1. By Lemmas 1 and 2 above, if

θ ∈ [−1, 1] is such that the strategy profile s?
φ is continuous at

−→
θ , then the action

profile s?
φ(
−→
θ ) is contagious in the complete information game v(·, θ).

Assume now that the strategy profile s?
φ has a discontinuity at

−→
θ . Since the number

of discontinuities of s?
φ is finite, for any sequence {xn}n∈N converging toward

−→
θ−, there

is an integer n̄ such that for all n ≥ n̄: 1) s?
φ is continuous at

−→
xn, and, 2) s?

φ(
−→
xn) = s?

φ(θ).

Notice that for any given complete information game g, if there exist an action profile

a? and a sequence {gn}n∈N of complete information games converging toward g such
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that a? is contagious in gn for all integers n ∈ N, then a? is contagious in g. As a

consequence, by Assumption 1 (continuity), the action profile s?
φ(θ) is contagious in the

complete information game v(·, θ). A similar argument applies for the right continuous

version s̄?
φ of the strategy profile s?

φ.
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